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Least squares regression estimates of causal effects are condi-
tional-variance-weighted estimates of individual-level causal ef-
fects. In this paper, we extract from the literature on counterfac-
tual causality a simple nine-step routine to determine whether or
not the implicit weighting of regression has generated a mislead-
ing estimate of the average causal effect. The diagnostic routine is
presented along with a detailed and original demonstration, using
data from the 2002 and 2004 waves of the Education Longitudinal
Study, for a contested but important causal effect in educational
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research: the effect of Catholic schooling, in comparison to public
schooling, on the achievement of high school students in the United
States.

1. INTRODUCTION

With the growth of interest in counterfactual approaches to causal anal-
ysis, simple regression estimates of causal effects are often considered
suspect. At the same time, the appeal of matching and natural experi-
ment approaches has increased substantially. One negative consequence
of these changes in research practice is that some investigators may
move too quickly to the estimation of matching and instrumental vari-
able models, under the justification that these models are either more
intuitive or more novel. In the end, however, the alternative estimates
obtained from such models may prove to be either worse than the regres-
sion results on various statistical criteria or nearly equal to the regression
estimates that were dismissed in preliminary analysis.

To minimize the risk of such missteps in analysis, it would be
helpful if simple and reliable routines were available to assess, after
specifying a regression model, whether the causal effect estimate ob-
tained is consistent with the most rigorous justification for regression
as a causal effect estimator: a case in which, conditional on the specifi-
cation of adjustment variables, individual-level variation in the causal
effect of interest is completely random. The goal of this paper is to
lay out one such routine based on the literature that has developed the
counterfactual approach to causal analysis.

The methods embedded within the proposed routine are not new
and have diverse and overlapping origins—inverse probability weighting
in survey statistics (see Kish 1965, 1987; Thompson 2002), missing data
imputation and survey nonresponse adjustment via weighted complete-
case analysis (see Little 1982; Little and Rubin 2002), weighting proce-
dures in multiple regression analysis for data from stratified samples
(see DuMouchel and Duncan 1983), propensity score models and gen-
eral methods for modeling the probability of treatment assignment (see
Rosenbaum and Rubin 1983; Rubin 2006; Rubin and Thomas 2000), di-
rect adjustment estimators (see Rosenbaum 1987, 2002), program evalu-
ation methods in econometrics (see Heckman and Robb 1985; Heckman
and Vytlacil 2005; Imbens 2004), models of causal effect heterogeneity in
econometrics (see Angrist 1998; Angrist and Krueger 1999; Heckman,
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Urzua, and Vytlacil 2006), and inverse probability of treatment weight-
ing in epidemiology (see Robins and Ritov 1997; van der Laan and
Robins 2003). Similar methods have been used in applications in soci-
ology (e.g., Brand and Halaby 2006) and reviewed in methodological
work (e.g., Morgan and Winship 2007).

Given the diversity and technical depth of this background lit-
erature, our primary goal in this paper is to distill from this material
a simple and accessible routine that can reveal to an analyst whether a
causal effect estimate from a regression model can be given a warranted
average causal effect interpretation, given the identification assumptions
that one is willing to maintain. This last “given” clause is crucial, as we
will present a routine that is general enough to be interpretable under
alternative sets of identification assumptions for the same application
(such as full ignorability, partial ignorability, or nonignorability, as we
describe later). This generality promotes consideration of these alter-
native assumptions, which thereby facilitates clarity of thinking about
their alternative appropriateness.

Our presentation strategy is to offer up front a complete demon-
stration of the diagnostic routine, showing all steps of the routine in
considerable detail. Only thereafter do we present foundational mate-
rial from the counterfactual model of causality. Our hope is that this
presentation strategy advances our primary goal, which is to convince
analysts unfamiliar with the fine points of the counterfactual model that
(1) they already have much of the technical know-how that is required
to implement the diagnostic routine and (2) having been given a clear
understanding of the routine from a practical data analysis perspective,
they can then better understand how the routine is grounded in and
justified by the literature on counterfactual causality.

2. MOTIVATION

As a departure point, consider a general multiple regression model of
the form

Y = a + b1 X1 + b2 X2 + · · · + bkXk + e, (1)

where Y is an interval-scaled outcome variable and X 1 through Xk

are predictor variables. Estimation of the slope parameters b1 through
bk via least squares can be motivated in a variety of ways, depending
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on the goals of the analysis. The model can be estimated as part of
a descriptive analysis where the goal is to obtain a best-fitting linear
approximation to the population-level relationship between Y and X 1

through Xk. Alternatively, the model can be estimated as part of a full
causal analysis where the goal is to identify the expected shifts in Y that
would result from what-if interventions on the values of X 1 through Xk.

For the main body of this paper, we consider an intermediate case
between these two extremes that has also become the focal model of the
literature on counterfactual causality. For this model, the variable X 1

in equation (1) is a dummy variable D, as in

Y = a + bd D + b2 X2 + · · · + bkXk + e, (2)

and the goal of the analysis is to estimate the causal effect on Y of
shifting D from 0 to 1. In this case, the variables X 2 through Xk are
considered adjustment variables that are entered into the regression
equation solely to aid in the effective estimation of the causal effect bd .
Accordingly, estimates of b2 through bk are of secondary interest and
are not typically given a causal interpretation. Moreover, under this
motivation it is generally presumed that individual causal effects may
vary, such that the effect on Y of shifting D from 0 to 1 is not the same
for all individuals.

Given this setup, we can now pose the challenge that the diag-
nostic routine of this paper is designed to address. Does a regression
estimate of a causal effect represented by bd in equation (2) mask im-
portant variation in the individual-level causal effect? In particular, is a
regression estimate of bd from equation (2) interpretable as

1. the average of individual-level causal effects for all individuals,
2. the average of individual-level causal effects for individuals with

D = 1,
3. the average of individual-level causal effects for individuals with

D = 0,
4. none of the above?

In the counterfactual causality literature, where those for whom D =
1 are considered members of the treatment group and those for whom
D = 0 are considered members of the control group, this question is
stated as: Is a regression estimate of bd interpretable as



CONSEQUENTIAL HETEROGENEITY OF CAUSAL EFFECTS 235

1. the average treatment effect (ATE),
2. the average treatment effect for the treated (ATT),
3. the average treatment effect for the controls (ATC),
4. none of the above?

The diagnostic routine presented here is designed to help an analyst
determine whether or not the answer to this question is “1, 2, and 3.” If
this is not the answer, then the answer will be “2,” “3,” or “4.” In this
case, consequential heterogeneity exists and the regression equation that
gives rise to an estimate of bd masks this heterogeneity.1

Notice that our conception of consequential heterogeneity is
model-dependent, as it is defined with reference to a specific regres-
sion equation and its associated set of adjustment variables. Hetero-
geneity of this form will arise from two sources: (1) variability in the
causal effect across individuals that is related to at least one of the vari-
ables in X 2 through Xk that also predicts D and (2) variability in the
causal effect across individuals that is related to an unobserved vari-
able embedded in e that predicts D, conditional on X 2 through Xk.
This second source of heterogeneity can itself be separated into two
categories: (1) variability that is a function of a known omitted vari-
able (such as mental ability for models that seek to estimate the causal
effect of education on earnings) and (2) variability that induces some
individuals to self-select into one of the two values of the causal vari-
able (such as an accurate individual-level forecast of the gains from
participation in a program being evaluated). This last source of het-
erogeneity is referred to as “essential heterogeneity” by Heckman et al.
(2006).2

In the remainder of this paper, we first offer background on
the demonstration of the routine that we will present as well as the
data source utilized. We then present and demonstrate each step of the
routine with minimal justification from the methodological literature.
Thereafter, we explain the routine using the literature on counterfactual

1If the answer is “1, 2, and 3,” then some heterogeneity of individual-level
causal effects may still exist, but it is inconsequential for most research questions
because it is random with respect to D.

2Pearl (in a personal communication, but see also Pearl 2000) maintains
that essential heterogeneity does not exist since, in principle, it should be indexed by
a variable in a model that obeys his Markov condition for the existence of a causal
model.
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causal analysis to justify its utilization. We conclude the article with
a discussion of regression, matching, and instrumental variable op-
tions for additional analysis when causal effect heterogeneity has been
detected.

3. BACKGROUND FOR THE DEMONSTRATION

3.1. The Catholic School Effect on Achievement in High School

In the 1966 government report Equality of Educational Opportunity,
James S. Coleman maintained that differences in resources between
public schools had surprisingly small effects on student achieve-
ment. Less than two decades later, Coleman and a new set of col-
leagues presented evidence that private Catholic schools in the United
States are more effective than public schools, even though they spend
comparably less money on each pupil (see Coleman, Hoffer, and
Kilgore 1982; Hoffer, Greeley, and Coleman 1985; Coleman and Hoffer
1987).

The original findings on the Catholic school effect were chal-
lenged immediately by other researchers (see Alexander and Pallas 1983,
1985; Goldberger and Cain 1982; Noell 1982; Willms 1985), but knowl-
edge of the size of the causal effect remains important for educational
policy and research. Many scholars, for example, contend that estimates
are needed to inform current policies on school choice and vouchers. In
addition, in the context of the present article, the Catholic school effect
has also become a frequent example in the methodological literature—
for the presentation of multilevel models (see Raudenbush and Bryk
2002), introductions to matching methods (see Morgan 2001), and cri-
tiques of regression practice (see Freedman 2005).

For the agenda of this paper, the application is appropriate be-
cause prior analysis of earlier data from the 1980s and 1990s suggests
that consequential heterogeneity exists for models of the form of equa-
tion (2), where D is attendance at a Catholic school and X 2 through Xk

are various family background, educational history, and demographic
variables. As we will discuss later, consequential heterogeneity may re-
sult because of heterogeneity in the effect of Catholic schooling across
strata of the adjustment variables and across strata of unobserved de-
terminants of the decision to enter Catholic schooling.



CONSEQUENTIAL HETEROGENEITY OF CAUSAL EFFECTS 237

3.2. Data

For the demonstration of the diagnostic routine, we analyze data from
the 2002 base-year and 2004 follow-up waves of the Education Longi-
tudinal Study (ELS), collected by the National Center for Education
Statistics (NCES) of the U.S. Department of Education. The ELS is a
nationally representative sample of students in public and private high
schools, based on a two-stage sampling design that first draws a ran-
dom sample of public and private high schools and then draws random
within-school samples of sophomores. For the first follow-up in 2004,
respondents were tracked to alternative destinations, and most respon-
dents were high school seniors.

From among all 15,360 base-year ELS participants, we restrict
the analysis to respondents who were enrolled in either a Catholic school
or a public school during the 2001–2002 academic school year. Table 1
presents descriptive results for the data we will analyze: 1918 students
who were enrolled in 95 Catholic schools and 12,025 students who were
enrolled in 580 public schools (for a total N= 13,943).

Several practical features of our subsequent analysis require de-
tailed explanation, which we provide in the appendix. None of the mate-
rial in the appendix is essential for understanding the diagnostic routine.
However, readers who are contemplating using the routine for a project
with a similar structure—where a complex sampling design necessi-
tates the use of a poststratification weight and where some models are
estimated with an adjustment for panel attrition—should consult the
appendix for practical advice. We show there how the weights we utilize
in the main text of the article can be multiplied by poststratification
weights and attrition-adjustment weights in order to account for design
features of the data. We also discuss briefly our decisions for how to
estimate standard errors for our various causal effect estimates, in light
of the complex nature of the sampling design as well as the estimation
of the weights deployed in the routine.

4. THE DIAGNOSTIC ROUTINE WITH A DEMONSTRATION

The diagnostic routine that we present in this section is simple and
is accessible to all researchers who can properly estimate a regression
model using the sampling weights that are typically made available with
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survey data. As we will show, the routine is not a rigid test. Rather, it is
a set of practices meant to guide a researcher to the conclusion that is
most consistent with the data and with one’s maintained assumptions.

A schematic diagram of the nine steps of the diagnostic rou-
tine is presented in Figure 1, categorized into three stages: (1) Estimate
baseline regression results, (2) model treatment selection/assignment

TABLE 1
Means and Standard Deviations of Primary Variables Used in the Demonstration

Public Catholic

Variable Mean S.D. Mean S.D.

Math Test Scores
IRT estimated number right (10th grade) 41.679 13.974 48.993 12.018
IRT estimated number right (12th grade) 47.640 15.048 56.084 12.802
Gain Score (12th–10th grade IRT

estimated number right)
4.656 6.485 6.661 6.058

Female .496 .475
Race (White is the reference category)

Black .151 .061
Hispanic .165 .113
Asian .041 .043
Native American .010 .002
Multiracial .043 .040

Urbanicity (Suburban is the reference category)
Urban .280 .584
Rural .209 .010

Region (Midwest is the reference category)
Northeast .181 .311
South .344 .227
West .234 .165

Family Background
Mother’s education (in years) 13.455 2.322 14.766 2.215
Father’s education (in years) 13.587 2.587 15.253 2.567
SEI score of mother’s occupation in

2002 (GSS 1989 coding)
44.975 12.865 50.551 12.850

SEI score of father’s occupation in 2002
(GSS 1989 coding)

44.146 11.696 49.813 11.709

Family income (natural log) 10.603 1.092 11.233 .897
Family income (natural log) squared 113.605 19.825 126.986 17.041
Family income (natural log) cubed 1225.640 295.463 1441.326 267.984
Two-parent family .746 .837

Continued



CONSEQUENTIAL HETEROGENEITY OF CAUSAL EFFECTS 239

TABLE 1
Continued

Public Catholic

Variable Mean S.D. Mean S.D.

Past History (as reported by parent)
Learning disability .126 .068
Ever held back .134 .053
Repeated 4th grade .005 .002
Years parents lived in current

neighborhood
10.557 8.001 12.897 8.210

Source: Education Longitudinal Study of 2002 (2002 and 2004 Waves).
Note: Data are weighted by the NCES poststratification weight (BYSTUWT).

N = 1918 students enrolled in Catholic schools, and N = 12,025 students enrolled in public
schools for all variables from the 10th grade. For the 12th grade math test scores and math
gain scores, N = 1660 students enrolled in Catholic schools and N = 8842 students enrolled in
public schools. For these two variables, the data are weighted by the NCES poststratification
weight (BYSTUWT) multiplied by the inverse probability of remaining in the same school
and not falling behind the usual grade for age.

Stage 3.  Estimate weighted 
regression  models and develop 
a diagnosis:

Estimate a model predicting 
membership in the treatment group 
from the adjustment variables used 
in the multiple regression model

Form weights as  a function of the 
predicted probabilities of 
membership in the treatment group

Check the balance of the adjustment 
variables produced by the weights

If the adjustment variables remain 
unbalanced, respecify the model 
predicting treatment group 
membership

Reestimate the intial regression 
models using the final weights

Compare alternative weighted 
regression estimates and accept a 
preliminary diagnosis if the estimates 
differ

Assess the stability of the preliminary 
diagnosis to alternative decisions 
about overlap and supplemental 
parametric  adjustment

Estimate a bivariate regression model

Estimate a multiple regression model 
by introducing adjustment variables

Stage 2.  Model treatment 
selection/assignment and construct 
weights:

Stage 1.  Estimate baseline
regression models:

FIGURE 1. A diagnostic routine for the detection of consequential heterogeneity of causal
effects.
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and construct weights, and (3) estimate weighted regression models and
develop a diagnosis. The ordering of the first two stages is somewhat ar-
bitrary. We suspect that readers new to this literature on causal modeling
will undertake the steps as we have laid them out in the figure and in the
remainder of this paper, beginning with familiar regression techniques.
Readers with more experience working within this literature are likely
to begin with Stage 2, modeling treatment selection/assignment and
constructing weights even before estimating baseline regression results
without using the weights.

For readers unfamiliar with the counterfactual model, the ratio-
nale for the proposed routine will be presented in Section 5 of the article
and is suppressed now for expediency. For readers already familiar with
the literature on counterfactual causality, the motivation for the routine
will be clear as the steps unfold. However, for these readers, we should
note now that we intend for this routine to be undertaken even when
treatment assignment is nonignorable because the results of the routine
can be (and, we would argue, should be) interpreted under alternative
assumptions about ignorability.3

Step 1: Estimate a Bivariate Regression Model

Estimate a bivariate regression equation by ordinary least squares:

Y = α̂ + δ̂OLS, bivariate D + ε, (3)

where Y is an interval-scaled outcome variable and D is the causal
variable of interest (equal to 1 for those exposed to one level of the
cause and equal to 0 for those exposed to the other). The estimated
coefficient δ̂OLS, bivariate is the estimated causal effect of D on Y .

Demonstration of Step 1. The bivariate regression estimates for the
Catholic school effect on achievement are presented in the first row and

3An implicit goal of this paper is to promote a mode of empirical analysis
in which results are interpreted in light of alternative plausible identifying assump-
tions (not the more traditional mode of analysis where identifying assumptions
are asserted, models are estimated, and then conclusions are drawn in light of the
maintained assumptions without explicit consideration of the extent to which the
conclusions are dependent on the assumptions).
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first column of each panel of Table 2.4 The three panels offer analogous
results for three related outcome variables: tenth-grade math test scores,
twelfth-grade math test scores, and math gains between the tenth and
twelfth grades. The estimates of δ̂OLS, bivariate in equation (3) are 7.314,
8.445, and 2.006 for the three different outcome variables. Because D =
1 for students who attend Catholic schools but D = 0 for students who
attend public schools, each of these estimates suggests that Catholic
school students have higher levels of achievement on standardized
tests.

Step 2: Estimate a Multiple Regression Model by Introducing
Adjustment Variables

Estimate a multiple regression model by ordinary least squares:

Y = α̂ + δ̂OLS, multiple D + Xβ̂ + ε, (4)

where X represents observed variables thought to determine D and
Y, δ̂OLS, multiple is the estimated causal effect of D on Y adjusted for X ,
and β̂ is a conformable vector of estimated coefficients that correspond
to the variables in X .

Demonstration of Step 2. The multiple regression estimates for the
Catholic school effect on achievement are presented in the second row
and first column of each panel of Table 2. Descriptive statistics for the 23
variables specified as X in equation (4) were presented earlier in Table 1.
The variables in X represent the most common family background,
demographic, and educational history variables utilized in school ef-
fects research. The coefficients for δ̂OLS, multiple are 1.479, 2.130, and

4As we note later in Step 7 and discuss in more detail in the appendix, the
estimates in the first column of Table 2 take into account the complex sample design
of the ELS. For all models reported in the first column, a poststratification weight is
utilized and estimation is by weighted ordinary least squares. Furthermore, for the
models in the first column in the second and third panels of Table 2, which utilize
twelfth grade tests both on their own and as gain scores as the outcome variable,
the estimates are based on models that also utilize an attrition-adjustment weight.
Thus, the column heading in Table 2 of “No Weight” refers only to the weights
introduced in subsequent steps.
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TABLE 2
Catholic School Coefficients from Regression Models Predicting 10th Grade

Math Test Scores, 12th Grade Math Test Scores, and Math Test Gains

Outcome Variable:
10th Grade Math Test

Predictor Variables No Weight ATT Weight ATC Weight

Model 1: Dummy for Catholic school
only

7.314 1.079 2.438
(.664) (.773) (1.172)

Model 2: Model 1 + family background,
demographics, and past history

1.479 1.083 2.415
(.524) (.556) (.592)

Outcome Variable:
12th Grade Math Test

No Weight ATT Weight ATC Weight

Model 1: Dummy for Catholic school
only

8.445 1.420 3.288
(.740) (.893) (1.356)

Model 2: Model 1 + family background,
demographics, and past history

2.130 1.604 4.012
(.601) (.663) (.714)

Outcome Variable: Math Gain
(12th–10th Grade Math Test)

No Weight ATT Weight ATC Weight

Model 1: Dummy for Catholic school
only

2.006 1.018 1.975
(.225) (.313) (.366)

Model 2: Model 1 + family background,
demographics, and past history

1.266 1.052 2.060
(.256) (.291) (.453)

Source: Education Longitudinal Study of 2002 (2002 and 2004 Waves).
Note: The data for all models are weighted by the base-year poststratification

weight. The data for the 12th grade math test and math gains models are weighted by a
supplemental attrition-adjustment weight. See note for Table 1 for sample size details and the
appendix to the article for details on how these various weights are handled in concert with
the ATT and ATC weights that differentiate the models.

1.266 in the three panels, each of which is considerably smaller than the
corresponding values of δ̂OLS, bivariate from the estimation of equation (3).
Nonetheless, the values of δ̂OLS, multiple suggest that Catholic school stu-
dents outperform public school students even after adjustments for the
variables in X .5

5For now, ignore the models presented in the second and third columns of
Table 2. These models will be explained in subsequent steps of the routine but are
presented in this table to facilitate later comparisons.
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Step 3: Estimate a Model Predicting Membership in the Treatment
Group from the Adjustment Variables Used in the Multiple

Regression Model

Estimate a model of treatment selection/assignment by first designating
one value of the cause D a treatment state and one value a control
state (i.e., designate subjects with d i = 1 as members of the treatment
group and subjects with d i = 0 as members of the control group). Then,
utilize an appropriate procedure to estimate the probability of being in
the treatment state rather than the control state.6 Finally, calculate the
estimated probability of being in the treatment state for each member
of the sample.

Demonstration of Step 3. Students attending Catholic school were des-
ignated the treatment group. A logit model was then estimated to predict
whether individuals attend Catholic school instead of public school (i.e.,
are members of the treatment group instead of the control group):

Logit(D) = Xφ̂, (5)

where the variables specified as X here are the same 23 variables specified
as X for the regression model in Step 2, and where φ̂ is a conformable
vector of estimated coefficients. Predicted values for the estimated prob-
ability p̂i that D equals 1 for each individual i were then calculated by
undoing the logit transformation through the substitution of xi φ̂ into
p̂i = exp(xi φ̂)

1 + exp(xi φ̂)
.

The estimated logit model fit the data reasonably well, delivering
a chi-squared test statistic of 404.03 with 23 degrees of freedom. The
predicted probabilities p̂i had a mean of .0440 and a standard devia-
tion of .0688. The distribution was heavily skewed with a minimum of
.0000182 but a maximum of .857.

Step 4: Form Weights as a Function of the Predicted Probabilities
of Membership in the Treatment Group

Having defined the treatment and the control groups in Step 3 and
estimated a corresponding set of predicted probabilities p̂i , from two
sets of weights w i, ATT and w i, ATC as

6The dominant method of estimating these probabilities is logit modeling,
although the case for more intensive data mining approaches is strengthening (see
Diamond and Sekhon 2005; Hansen 2004; McCaffrey, Ridgeway, and Morral 2004).
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For di = 1: wi, ATT = 1,

For di = 0: wi, ATT = p̂i

1 − p̂i
,

(6)

and

For di = 1: wi, ATC = 1 − p̂i

p̂i
,

For di = 0: wi, ATC = 1.

(7)

These weights are equivalent in structure to survey weights that must
be used to weight complex samples so that they are representative of
their respective target populations.7 When using the weight w i, ATT,
the population-level treatment group is specified as the target popula-
tion. The weight leaves the sampled treatment group unaltered (because
w i, ATT = 1 for those in the treatment group), but it attempts to turn
the control group into a representative sample of the population-level
treatment group (because wi, ATT = p̂i

1− p̂i
for those in the control group).

The weight w i, ATC works in the opposite direction.

Demonstration of Step 4. The weights were calculated in equations (6)
and (7), using the p̂i from the logit model estimated in Step 3. When
applied to the ELS data, the weight w i, ATT leaves the Catholic school
sample unaltered but weights the public school sample in an attempt to
generate a sample that is representative of Catholic school students with
respect to the distribution of X . Likewise, the weight w i, ATC leaves the
public school sample unaltered but weights the Catholic school sample
in an attempt to generate a sample that is representative of public school
students with respect to the distribution of X . The next step assesses the
effectiveness of the estimated weights in achieving these goals.

Step 5: Check the Balance of the Adjustment Variables
Produced by the Weights

In the counterfactual tradition of observational data analysis that is the
foundation of this diagnostic routine, the utilization of weights to align

7We can also form a weight for the average treatment effect equal to 1/(1 −
p̂i ) for those with d i = 0 and 1/ p̂i for those with d i = 1 (see Imbens 2004 and Morgan
and Winship 2007). We do not focus on this weight in this article, as it is not helpful
in meeting the specific goals of the diagnostic routine.
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treatment and control groups on the distribution of X does not often
use the sort of intuition just provided based on estimation from survey
data. Rather, because of its relationship to experimental methodology,
weights such as w i, ATT and w i, ATC are represented as tools to balance
the data so that the resulting balanced data can be analyzed as if they
have been generated by a randomized experiment.

In this regard, the variables in X are said to be balanced with
respect to the treatment variable D if

Pr[X |D = 1] = Pr[X |D = 0]. (8)

Perfect balance requires that all moments of these distributions be ex-
actly the same in the treatment and control groups, with all departures
between the two being small enough to be attributable to finite sample
bias. If the variables in X are two-valued indicator/dummy variables,
then the means alone must be equal for balance to be achieved. But, if
X includes many-valued variables, then all features of their full distri-
butions across treatment and control groups must be equal for the data
to be considered fully balanced.

Demonstration of Step 5. The raw data are substantially unbalanced, as
shown in the means and standard deviations that were reported earlier
in Table 1. In general, public school students are less advantaged and
are more heterogeneous with respect to the characteristics in X . For
example, the mean of mother’s education in years is 13.455 for those in
public schools but 14.766 for those in Catholic school. The mean of the
log of family income is 10.603 for those in public schools but 11.233 for
those in Catholic schools. Moreover, the dispersion of the log of family
income is substantially different as well; its standard deviation is 1.092
for those in public schools but only .897 for those in Catholic schools.

To assess the degree of balance achieved by the weights formed
in Step 4, a metric of balance must be constructed. The first metric we
use is an average of standardized mean differences across treatment and
control groups (see Rubin 1973), which can be constructed with different
weights and then compared across weighting schemes. The standardized
difference of the mean for each variable in X is calculated as

|x̄i,di =1 − x̄i,di =0|√
1
2 Var[xi,di =1] + 1

2 Var[xi,di =0]
, (9)
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where x̄i,di =1 is the mean for those in the treatment group, x̄i,di =0 is
the mean for those in the control group, Var[xi,di =1] is the variance for
those in the treatment group, and Var[xi,di =0] is the variance for those in
the control group. Equation (9) yields a scaled absolute difference in the
mean of a variable in X across the treatment and control groups. These
values can be combined across all variables in X in order to construct
an average standardized difference of means. The average standardized
difference of means can be calculated under different weighting schemes
in order to compare the relative performance of alternative weights in
achieving balance.

Because balance is not just a property of the means of variables
but also of higher moments of the distributions, we used a second met-
ric of balance for variables that are not two-valued indicator/dummy
variables. For this metric, we change equation (9) slightly, substituting
standard deviations in the treatment and control groups for x̄i,di =1 and
x̄i,di =0. The modified version of equation (9) then yields a scaled abso-
lute difference in the standard deviation of a variable in X across the
treatment and control groups. Because these values are standardized,
they can also be combined across alternative variables in X in order to
construct an estimate of the average standardized difference in standard
deviations.8

For the ELS data, we first calculated the baseline level of balance
by estimating the average standardized difference of means for the vari-
ables in X without using the weights formed in Step 4. The means of the
variables (as well as the corresponding standard deviations for variables
that take on more than two values) are reported in Table 1, separately
for those in Catholic and public schools. We then calculated the balance
after using the two separate weights w i, ATT and w i, ATC. The weights
succeeded in producing substantial balance, reducing the average stan-
dardized difference of means from .350 to .00634 when using w i, ATT

and to .111 when using w i, ATC. The average standardized difference of
standard deviations also fell substantially from .0715 to .0391 when us-
ing w i, ATT and to .0287 when using w i, ATC. The increase in balance that
results from employing w i, ATT and w i, ATC is substantial, but the balance

8In principle, we could move on to higher moments of the distributions,
assessing skewness next. We stop at the second moment here. Note, however, that
we consider the mean and standard deviation of log family income, its square, and
its cube. Thus, for this variable, we attempt to match up far more than just its
expectation and variance.
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is not perfect. The remaining imbalance suggests that respecifying the
model of treatment selection/assignment may be worthwhile.

Step 6: If the Adjustment Variables Remain Unbalanced, Respecify
the Model Predicting Treatment Group Membership Until

No Further Improvement in Balance Can Be Obtained
(and Repeat Steps 3 through 5)

The initial specification of the model of treatment selection/assignment
in Step 3 was borrowed from the specification of adjustment variables
in X for the multiple regression in Step 2. The goal of the present step
is to enrich the parameterization of the treatment selection/assignment
model in an attempt to construct weights that further improve the bal-
ance on the variables in X when the weights are deployed. Accord-
ingly, interactions between the variables in X not already included in
the regression specification, as well as transformations of the original
variables, should be considered.

Although various data mining procedures can be wedded to bal-
ancing metrics in pursuit of a best possible model (see Diamond and
Sekhon 2005; Rosenbaum 2002), much progress is possible with con-
trolled trial-and-error methods. We recommend a forward selection pro-
cedure whereby interactions that have some justification in theory and
past research are added progressively until improvements in balance
cease to arise.

Demonstration of Step 6. The original logit model from Step 3 fit the
data reasonably well and also provided good balance. However, a better
fit was available that also yielded weights that provided even better
balance. We added 75 interaction terms to the initial logit model that
predicted Catholic school attendance. The predicted probabilities p̂i

from this new model have a mean of .0440, a standard deviation of
.0756, a minimum of 0, and a maximum of .892.9

9The model was so predictive that a number of cases were completely
determined. In particular, 2406 public school students were given predictive values
arbitrarily close to 0 by the program (though no Catholic schools students were
deemed completely determined and given values arbitrarily close to 1). These public
school students were mostly low-SES rural students. Putting forward a specification
of this form is tantamount, as in Morgan (2001), to matching perfectly on nonrural
student status.
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FIGURE 2. Kernel density estimates of the estimated propensity score, calculated sepa-
rately for public school students (black solid) and Catholic school students (gray
dashed).

Figure 2 presents kernel density estimates of these predicted prob-
abilities, separately for those in Catholic schools and public schools.
There is substantial overlap in the predicted probabilities, but there
are no public school students with p̂i greater than .738 and no Catholic
school students with p̂i less than .00115. If we could focus in very closely
on the tails of the densities, we would be able to see that there are 6
Catholic school students with .738 < p̂i ≤ .892 who have no counter-
parts among public school students as well as 2739 public school stu-
dents with 0 ≤ p̂i < .00115 who have no counterparts among Catholic
school students.

By the common support standards that prevail in observational
data analysis, these data would be regarded as characterized by
sufficient overlap for analysis to be worthwhile, since 1912 of the 1918
treatment cases have p̂i within the range of p̂i estimated for the control
cases. However, there is enough of a lack of overlap that some caution
is in order, especially when making inferences about how public school
students would fare if they were instead enrolled in Catholic schools.
We will discuss these concerns in more detail later when offering
estimates restricted to the region of overlap (i.e., the common support)
where .00115 ≤ p̂i ≤ .738.
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As just mentioned, the revised weights yielded slightly more bal-
ance when applied to the data. In particular, the average standardized
difference of means fell further to .00437 when using w i, ATT and to
.0899 when using w i, ATC. Likewise, the average standardized difference
of standard deviations also fell to .0166 when using w i, ATT and to .0229
when using w i, ATC.

To give a better sense of how well these weights have succeeded
in producing balance (and for two different weighting schemes), we
present the weighted means of each of the variables in X for Catholic
and public school students in Table 3. The differences between each of
the two panels can be directly compared to the raw differences reported
earlier based on Table 1. For example, the unbalanced raw difference
in mother’s education between Catholic and public school students is
1.311 (i.e., |14.766 − 13.455| from Table 1), whereas the difference is
reduced to .006 when using w i, ATT (i.e., |14.766 − 14.772| from Panel A
of Table 3) and .121 when using w i, ATC (i.e., |13.576 − 13.455| from
Panel B of Table 3).

The only variables that proved difficult to balance were some
of the categorical variables, especially urbanicity and region because
of the geographic distribution of Catholic schools. Nonetheless, the
balance achieved by these weights is impressive.10 And, as we show in
subsequent steps of the routine, the remaining imbalance can be handled
by supplemental parametric adjustment within a weighted regression
framework.

Step 7: Reestimate the Initial Regression Models Using
the Final Weights

Estimate the bivariate regression in equation (3) from Step 1 and the
elaborated multiple regression in equation (4) from Step 2 using the

10Perfect balance is not needed to warrant causal inference if it can be
assumed that the average treatment effect of interest only depends on some particular
features of the distribution of X . Even so, perfect balance for the full distribution of
X is the standard for which an analyst should strive. Rubin (2006) discusses these
issues, and he concludes with with the advice: “Of course, at some point, this sort
of [perfect balance] assessment must terminate, because no matter how large the
samples, the investigator will almost certainly not be able to achieve this balance
for all covariates and their interactions simultaneously, and higher order terms
in prognostically minor covariates are clearly less important than prognostically
important ones, and so scientific judgment must enter the process, just as it does
when designing a randomized experiment” (p. 462).
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TABLE 3
Means and Standard Deviations of Primary Predictor Variables, Weighted
Separately by the ATT and ATC Weights from the Final Estimation of the

Treatment Selection/Assignment Model

A. ATT Weight

Public Catholic

Variable Mean S.D. Mean S.D.

Female .476 .475
Race (White is the reference category)

Black .062 .061
Hispanic .111 .113
Asian .043 .043
Native American .001 .002
Multiracial .042 .040

Urbanicity (Suburban is the reference category)
Urban .583 .584
Rural .010 .010

Region (Midwest is the reference category)
Northeast .310 .311
South .230 .227
West .162 .165

Family Background
Mother’s education (in years) 14.772 2.202 14.766 2.215
Father’s education (in years) 15.254 2.566 15.253 2.567
SEI score of mother’s occupation in

2002 (GSS 1989 coding)
50.563 12.773 50.551 12.850

SEI score of father’s occupation in 2002
(GSS 1989 coding)

49.673 11.683 49.813 11.709

Family income (natural log) 11.241 .844 11.233 .897
Family income (natural log) squared 127.065 16.502 126.986 17.041
Family income (natural log) cubed 1441.917 261.939 1441.326 267.984
Two-parent family .834 .837

Past History (as reported by parent)
Learning disability .068 .068
Ever held back .051 .053
Repeated 4th grade .002 .002
Years parents lived in current

neighborhood
12.937 8.964 12.897 8.210

Continued

weight w i, ATT and then again using the weight w i, ATC. No specialized
software is required for this step, and the weights are treated exactly as if
they are sampling weights. For example, in software such as Stata, they
can be specified as pweights within the standard regression routine.
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TABLE 3
Continued

B. ATC Weight

Public Catholic

Variable Mean S.D. Mean S.D.

Female .496 .527
Race (White is the reference category)

Black .151 .195
Hispanic .165 .126
Asian .041 .059
Native American .010 .011
Multiracial .043 .046

Urbanicity (Suburban is the reference category)
Urban .280 .326
Rural .209 .051

Region (Midwest is the reference category)
Northeast .181 .277
South .344 .294
West .234 .161

Family Background
Mother’s education (in years) 13.455 2.322 13.576 2.346
Father’s education (in years) 13.587 2.587 13.803 2.677
SEI score of mother’s occupation in

2002 (GSS 1989 coding)
44.975 12.865 45.875 13.099

SEI score of father’s occupation in 2002
(GSS 1989 coding)

44.146 11.696 44.051 11.706

Family income (natural log) 10.603 1.092 10.621 1.030
Family income (natural log) squared 113.605 19.825 113.867 19.360
Family income (natural log) cubed 1225.640 295.463 1228.936 292.933
Two-parent family .746 .713

Past History (as reported by parent)
Learning disability .126 .135
Ever held back .134 .118
Repeated 4th grade .005 .004
Years parents lived in current

neighborhood
10.557 8.001 10.720 6.893

Source: Education Longitudinal Study of 2002 (2002 and 2004 Waves).
Note: See Table 1.

Although using weights to adjust for differences between the
treatment and control groups may appear awkward at first exposure,
the procedure is entirely straightforward. As noted earlier, the weights
w i, ATT and w i, ATC are equivalent in structure to survey weights that are
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used to weight complex samples so that they are representative of their
respective target populations.11 We showed earlier how weights adjust
mean differences between the treatment and control groups (see our
comparison of Tables 1 and 3). For models without additional variables
entered as covariates, the adjustment is exactly the same. When the
variables that are used to generate the weights via logit modeling are also
included in the regression model as covariates, the same logic applies
but the models also attempt to adjust for any remaining imbalance in X
due to data sparseness and misspecification of the model that was used
to estimate the weights.12

Demonstration of Step 7. Weighted variants of δ̂OLS, bivariate and
δ̂OLS, multiple in equations (3) and (4) are reported in the second and third
columns of the three panels of Table 2. As detailed in the appendix, the
complex sample design of the ELS necessitated using the weights w i, ATT

and w i, ATC along with a poststratification weight (and, for the models
that utilize twelfth grade tests both on their own and as gain scores, also
an attrition-adjustment weight). Finally, as for the regression models
reported in Table 2, we calculated heteroskedastic-consistent standard
errors with a supplemental adjustment for the clustering of students
within schools. The estimated standard errors are therefore comparable
across columns.

Step 8: Compare Alternative Weighted Regression Estimates and
Accept a Preliminary Positive Diagnosis if the Estimates Differ

No automatic procedure is available to determine whether the regres-
sion estimates are sufficiently different to conclude that causal effect
heterogeneity is present. Scholars must use standard statistical inference

11The intuition here goes in both directions. One way to test for the ne-
cessity of using survey weights for a regression model is to test whether the weights
predict the outcome in an unweighted regression equation where the weights are
added as a supplementary variable (perhaps as a polynomial and interacted with
the other variables in X ; see DuMouchel and Duncan [1983]).

12See Imbens (2004), Morgan and Winship (2007, ch. 5), and van der
Laan and Robins (2003) for additional explanation of the weighting approach to
adjustment. Kish (1987) and Pearl (2000) provide complementary explanations of
the basic weighting approach that do not rely directly on the potential outcomes
framework.
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procedures and consider other research bearing on the same research
question. For this reason, we explain this step in the routine by moving
immediately to our process of judgment for the demonstration offered.

Demonstration of Step 8. Consider first the weighted multiple regres-
sion model for the Catholic school effect on the tenth grade math test.
The estimated coefficient is 1.083 with a standard error of .556 when
the w i, ATT weight is utilized. In contrast, when the w i, ATC weight is
utilized, the coefficient increases to 2.415 with a standard error of .592.
For all analogous comparisons of models, the pattern is very similar.
The models suggest that the Catholic school effect is larger for the types
of students who attend public schools than for the types of the students
who attend Catholic schools.

Are these differences large enough to be considered meaningful?
A comparison of the 95-percent confidence intervals for each estimate
may suggest not. Consider the regression model for the Catholic school
effect on the tenth grade math test. Here, the 95-percent confidence in-
terval is (−.007, 2.173) for the estimate using w i, ATT and (1.255, 3.575)
for the estimate using w i, ATC. Clearly, these intervals overlap. Scien-
tific judgment, however, suggests that this overlap should not lead re-
searchers to conclude that there are no substantive differences of im-
portance, as we now explain.

First, the difference between the two point-estimates is substan-
tively large at 1.332; this difference suggests that the average effect of
Catholic schooling is 123 percent larger for those who typically attend
public schools than for those who typically attend Catholic schools (i.e.,
2.415−1.083

1.083 = 1.23). The 95-percent confidence interval for the difference,
based on a standard error of .812, is (−.260, 2.924). This confidence in-
terval is dominated by positive probability mass and suggests that values
for the difference ≥ 2.664 are just as likely as values ≤ 0.13

Second, the difference of 1.332 is consistent with much past
work on this substantive question (see Bryk, Lee, and Holland [1993];
Hoffer, Greeley, and Coleman [1985]; Morgan [2001]; and Neal [1997],
all of which will be discussed later in this article). Evolving interpretive

13Moreover, the estimated standard error on which this confidence interval
is based does not take into account that the two estimates were generated from the
same sample. The confidence interval (−.260, 2.924) is, in fact, a bit too wide (but not
by much given the size of the available sample). In other applications, a same-sample
correction may be more consequential.
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standards in statistical inference demand that such prior information
be considered. If a full Bayesian posterior were generated, the lower
end of the frequentist confidence interval, −.260, would be judged too
negative as guidance for further research.

For these two reasons, we judge the difference between the
weighted regression estimate of the average treatment effect for the
treated and the average treatment effect for the controls to indicate that,
on average, students who are more likely to attend Catholic schools
are the least likely to benefit from doing so. Accordingly, our prelim-
inary diagnosis is that the average causal effect estimates suggested
by the baseline unweighted regression models in Table 2 mask un-
derlying heterogeneity of the causal effect that is both substantial and
consequential.

Step 9: Assess the Stability of the Preliminary Diagnosis
to Alternative Decisions

In this step, researchers should reflect on all decisions made in ear-
lier steps, seeking to determine whether plausible alternative decisions
would have generated the opposite preliminary diagnosis in Step 8. Two
important decisions from prior steps must be examined in applications
such as ours: (1) the handling of overlap issues in the estimation of the
weighted regression models and (2) the selection of variables included
in X for supplemental parametric adjustment in the weighted multiple
regression models.14

Demonstration of Step 9. For the estimation of the weighted regres-
sion models with w i, ATT and w i, ATC (columns 2 and 3 of Table 2), we
used all sample members, recognizing, however, that with respect to p̂i ,
there are 6 Catholic school students who have no counterparts among
public school students and 2739 public school students who have no
counterparts among Catholic school students.

Table 4 presents all of the models from Table 2 again, but this
time the estimation sample is restricted to the region of overlap on the

14An examination of this sort is often referred to as a sensitivity analysis,
although there is disagreement in the literature on whether the phrase “sensitivity
analysis” should be restricted only to targeted examinations of the plausibility of
alternative assertions of ignorability, as defined later.
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TABLE 4
Catholic School Coefficients from Regression Models Predicting 10th Grade

Math Test Scores, 12th Grade Math Test Scores, and Math Test Gains, Restricted
to the Region of Overlap (i.e., the Common Support)

Outcome Variable:
10th Grade Math Test

Predictor Variables No Weight ATT Weight ATC Weight

Model 1: Dummy for Catholic school
only

7.009 1.022 2.183
(.686) (.771) (1.186)

Model 2: Model 1 + family background,
demographics, and past history

1.345 1.054 2.446
(.524) (.555) (.586)

Outcome Variable:
12th Grade Math Test

No Weight ATT Weight ATC Weight

Model 1: Dummy for Catholic school
only

7.973 1.379 2.851
(.766) (.894) (1.370)

Model 2: Model 1 + family background,
demographics, and past history

2.000 1.585 3.978
(.604) (.663) (.669)

Outcome Variable: Math Gain
(12th–10th Grade Math Test)

No Weight ATT Weight ATC Weight

Model 1: Dummy for Catholic school
only

1.859 1.025 1.821
(.229) (.313) (.369)

Model 2: Model 1 + family background,
demographics, and past history

1.242 1.062 1.954
(.261) (.290) (.345)

Source: Education Longitudinal Study of 2002 (2002 and 2004 Waves).
Note: The data for this table are analyzed in exactly the same manner as for Table 2,

but some Catholic school students and some public school students were dropped before
the models were estimated because they are not in the union of the two estimated ranges
of the propensity scores for the two groups. For the 10th grade models, 6 Catholic school
students and 2739 public schools students were dropped, reducing the Ns to 1912 and
9286 respectively. For the 12th grade and math gains models, 5 Catholic school students
and 2028 public schools students were dropped, reducing the Ns to 1655 and 6814 respectively.

estimated probability of treatment selection/assignment, .00115 ≤ p̂i ≤
.738. For the tenth grade math test score models, the sample size is re-
duced from 13,943 to 11,198. For the twelfth grade math test score and
math gains models, the sample size is reduced from 10,502 to 8469. A
comparison of the results in Table 4 to those reported earlier in Table 2
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shows that the preliminary diagnosis is stable with respect to this deci-
sion. The point-estimates of the respective average causal effects change
slightly, but, in general, the same pattern holds with estimates of the
average treatment effect for students in Catholic schools remaining sub-
stantially lower than estimates of the average treatment effect for stu-
dents in public schools.

As we discuss later, in many applications this step will yield alter-
native results. If a difference between the estimates that utilize w i, ATT

and w i, ATC changes substantially when the two weighted regression
models are restricted to the region of overlap (i.e., the common support),
then heterogeneity in the treatment effect is likely to exist. However, it
is unlikely that we can model this heterogeneity effectively because of a
lack of overlap in the region where the heterogeneity exists. This would
be the case if, for example, the incomparable members of the treatment
group (i.e., those whose values for the propensity score lie outside of the
range of the propensity score for the control group) differ substantially
on the outcome from the members of the treatment group who have
counterparts in the control group. In such a case, the preliminary diag-
nosis that heterogeneity exists would be affirmed, but the prospects for
effectively estimating the average treatment effect for either the treated or
the controls would diminish substantially. The goals of analysis would
then shift toward estimating the average causal effect for a subset of
either the treated or the control groups.

In the present application, the relative difference between the
estimates that utilize w i, ATT and w i, ATC did not change substantially,
and thus regression-based extrapolation outside of the region of overlap
may be feasible and may allow for the effective estimation of the average
treatment effect for the treated and/or for the controls. Thus, these
results suggest that heterogeneity exists and that it is amenable to further
analysis.

Consider now the consequences of the choice of variables for
supplemental adjustment. For the weighted regression models that im-
plement supplemental adjustment for remaining imbalance (i.e., row 2
in each panel of columns 2 and 3 in Table 2), we chose not to include
any additional variables beyond the 23 variables in X that were used in
the initial unweighted regression model.

The original literature on the Catholic school effect considered
slightly different variables for regression adjustment than the variables
that we included in X for the original multiple regression (that is,
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Model 2 in Table 2). Supplemental adjustments were often performed
with variables such as students’ educational expectations and parental
involvement. Coleman and his colleagues recognized that these vari-
ables were not clearly “prior to” Catholic school attendance and thus
were likely influenced by the posited causal effect itself. Yet they wanted
to show that, even adjusting for these variables, the apparent effects of
Catholic schooling persisted in their models.

In our case, with the goal of completing the diagnostic routine,
we are not as interested in determining how much the estimated causal
effects are reduced when additional adjustment variables are entered
into the various regression models (although were they to change in un-
expected ways, such as vanishing entirely, one of a number of reasonable
interpretations would need to be advanced). Rather, we are interested in
determining whether the inclusion of additional adjustment variables in
the weighted regressions would change our preliminary diagnosis from
Step 8.

With this goal in mind, Table 5 presents the means and stan-
dard deviations of variables for educational expectations and parental
involvement in school. The first panel of Table 5 presents differences
without applying either weight, which shows that students attend-
ing Catholic schools are expected to obtain more years of postsec-
ondary schooling (nearly a year in students’ own expectations and al-
most as much in parents’ expectations). In addition, more than half
of all parents of Catholic school students volunteer at their schools,
which is twice as high as the rate for the parents of public school
students.

The second and third panels then apply the two weights to the
variables to show that both w i, ATT and w i, ATC balance these variables to
some degree because educational expectations and parental involvement
are fairly strongly related to the variables that were used in the prior logit
model that generated the weights. Yet, substantial imbalance remains
because the probability of treatment assignment is not directly modeled
as an outcome of expectations or parental involvement in earlier steps.
Thus, regression models that introduce these supplemental variables
should reduce the average causal effect estimates.

As shown in Table 6, the variables for expectations and parental
involvement reduced the causal effect estimates by a substantial amount.
However, the effects remain positive and in the same pattern. Most im-
portant for the diagnostic routine, the estimated average effect using the
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TABLE 5
Means and Standard Deviations of Additional Predictor Variables, Without

Weighting and then Weighted Separately by the ATT Weight and the ATC Weight
from the Final Estimation of the Treatment Selection/Assignment Model

A. No Weight

Public Catholic

Variable Mean S.D. Mean S.D.

Educational expectations for student (in years)
Student 16.471 2.247 17.429 1.774
Mother 16.501 2.236 17.160 1.809
Father 16.410 2.277 17.151 1.859

Parent volunteer at school (as reported by parent) .251 .518

B. ATT Weight

Public Catholic

Variable Mean S.D. Mean S.D.

Educational expectations for student (in years)
Student 17.055 2.006 17.429 1.774
Mother 17.011 1.950 17.160 1.809
Father 16.994 1.963 17.151 1.859

Parent volunteer at school (as reported by parent) .309 .518

C. ATC Weight

Public Catholic

Variable Mean S.D. Mean S.D.

Educational expectations for student (in years)
Student 16.471 2.247 17.269 1.838
Mother 16.501 2.236 16.926 2.138
Father 16.410 2.277 16.686 2.185

Parent volunteer at school (as reported by parent) .251 .462

Source: Education Longitudinal Study of 2002 (2002 and 2004 Waves).

weight w i, ATT remains smaller than the estimated average effect using
the weight w i, ATC. Moreover, the relative difference in the estimates is
larger for Model 3 in Table 6 than for Model 2 in Table 2.

In sum, our preliminary diagnosis is supported by the supple-
mental analyses reported in Tables 4 through 6. Alternative decisions
about overlap issues and supplemental regression adjustment did not
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TABLE 6
Catholic School Coefficients from Regression Models Predicting 10th Grade

Math Test Scores, 12th Grade Math Test Scores, and Math Test Gains, Including
Additional Covariates

Outcome Variable:
10th Grade Math Test

Predictor Variables No Weight ATT Weight ATC Weight

Model 3: Model 2 + expectations and
parental involvement

.792 .224 1.256
(.521) (.536) (.621)

Outcome Variable:
12th Grade Math Test

No Weight ATT Weight ATC Weight

Model 3: Model 2 + expectations and
parental involvement

1.581 .823 2.766
(.599) (.625) (.738)

Outcome Variable: Math Gain
(12th–10th Grade Math Test)

No Weight ATT Weight ATC Weight

Model 3: Model 2 + expectations and
parental involvement

1.245 .977 1.937
(.261) (.289) (.439)

Source: Education Longitudinal Study of 2002 (2002 and 2004 Waves).
Note: See Table 2.

alter the relative sizes of the weighted regression estimates that utilize
w i, ATT and w i, ATC. As a consequence, the preliminary diagnosis is sup-
ported, and we conclude that consequential heterogeneity of the causal
effect is present. We explain next why this interpretation is warranted.

5. THE PROPOSED DIAGNOSTIC ROUTINE EXPLAINED

Before using the counterfactual model to justify the routine, a presen-
tation of the primary features of the counterfactual model is required.
After offering relevant background material, the foundation of the rou-
tine in the principles of the counterfactual model will be explicated. The
concluding diagnosis for the demonstration of the last section will then
be reiterated and expanded, using concepts that are drawn directly from
the counterfactual model.
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5.1. Background: The Counterfactual Tradition of Causal Modeling

The most important foundational work on the counterfactual model of
observational data analysis was completed in statistics and econometrics
(see the citations offered in Heckman 2000, Manski 1995, Rosenbaum
2002, and Rubin 2005 to their own work and that of their respective
predecessors). More detail on the following background presentation is
available in Morgan and Winship (2007). Other presentations written for
sociologists and political scientists are also available (see King, Keohane,
and Verba 1994; Sobel 1996, 2000).

Outcomes, Treatment Groups, and the Average Causal Effect. For the
Catholic school demonstration offered in the previous section, the out-
come of interest Y is a score on a standardized test. Within the counter-
factual tradition, an outcome variable such as this one is given a defini-
tion that is based on potential outcomes associated with the causal effect
of interest. Accordingly, y1

i is the potential outcome in the treatment
state (Catholic school) for individual i, and y0

i is the potential outcome
in the control state (public school) for individual i. The individual-level
causal effect of the treatment is then defined as

δi = y1
i − y0

i , (10)

which for the demonstration is the causal effect of Catholic schooling
instead of public schooling for individual i. Similarly, Y 1 and Y 0 are
population-level potential outcome random variables, and the average
treatment effect (ATE) in the population is

E[δ] = E[Y 1 − Y 0], (11)

where E[.] is the expectation operator from probability theory.
Similar to the way in which the variable D was utilized for the re-

gression in the demonstration earlier, the treatment and control groups
are defined by the random variable D. This variable takes on values of
d i = 1 for each individual i who is a member of the treatment group (ob-
served attending a Catholic school) and d i = 0 for each individual i who
is a member of the control group (observed attending a public school).

Given these definitions of Y 1, Y 0, and D, the observed outcome
variable Y is defined as

Y = DY 1 + (1 − D)Y 0. (12)
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Thus, the observed values for the variable Y are yi = y1
i for individuals

with d i = 1 and yi = y0
i for individuals with d i = 0. Accordingly,

the math test variable for the demonstration is equal to the potential
outcome under the treatment state for Catholic school students but the
potential outcome under the control state for public school students.

Ignorability and Identification of the ATE. In the counterfactual tra-
dition, treatment selection/assignment patterns are represented by the
general conditional probability distribution

Pr[D = 1 | S], (13)

where S denotes all variables that systematically determine treatment
selection/assignment. The specific values of equation (13) are known as
propensity scores. They are the true probability that an individual with
characteristics S will be in the treatment group (d i = 1) rather than the
control group (d i = 0).

Complete observation of S allows a researcher to assert that treat-
ment selection is “ignorable” and then to estimate consistently the aver-
age treatment effect in equation (11). The general idea here is that within
strata defined by S the remaining variation in the treatment variable D is
completely random and hence that the process generating this remain-
ing variation is ignorable. We now explain the idea of ignorability more
formally.

The concept of ignorability is a conditional variant of the inde-
pendence assumption

(Y 0, Y 1) |= D, (14)

where the symbol |= denotes independence and where the parentheses
enclosing Y 0 and Y 1 stipulate that D must be jointly independent of
all functions of the potential outcomes (such as δ). If equation (14)
holds, then learning whether individuals are in the treatment group or
in the control group yields no information whatsoever about the sizes
of individual-level treatment effects or average treatment effects across
subsets of observed individuals.15

15All that is learned in this case are the values of d i , the values of yi , and
whether each individual’s yi is equal to either y1

i or y0
i .
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Ignorability of treatment selection/assignment is weaker than
independence of potential outcomes from D as represented by equation
(14). Ignorability of treatment selection/assignment holds in the case
where:

(Y 0, Y 1) |= D | S, (15)

and where S is fully observed. The treatment assignment mechanism is
ignorable when the potential outcomes (and any function of them, such
as δ) are independent of the treatment variable within strata defined by
all combinations of values on the observed variables in S that deter-
mine treatment selection via equation (13). If all of the variables in S in
equation (13) are observed, the ATE in equation (11) can be estimated
by basic conditioning techniques.16

Conditional Average Treatment Effects and Their Identification. The
unconditional ATE is not the only average causal effect of interest. The
average treatment effect for the treated (ATT) is

E[δ | D = 1] = E[Y 1 − Y 0 | D = 1], (16)

and the average treatment effect for the controls (ATC) is

E[δ | D = 0] = E[Y 1 − Y 0 | D = 0]. (17)

For estimation of the effect of a two-valued cause, meaningful hetero-
geneity of individual-level causal effects exists when E[δ | D = 1] and
E[δ | D = 0] differ from each other to a degree that is deemed substan-
tial by an analyst.17

For the Catholic school example, the ATT is the average effect
of Catholic schooling on achievement of those who attend Catholic
schools. The ATC is the opposite: the average effect of Catholic school-
ing on achievement of those who attend public schools. Both average

16Expectation-based variants of ignorability assumptions are weaker but
sufficient to identify the ATE (see Imbens 2004).

17Of course, meaningful heterogeneity may still exist even if E[δ | D = 1] =
E[δ | D = 0]. However, the most important form of heterogeneity to consider is the
one where the average effect of the cause differs for those exposed to the different
levels of the cause. This type of heterogeneity is the focus of the diagnostic routine.
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causal effects are different conceptually from the ATE in equation (11),
which is the average effect of Catholic schooling across all students.

The ATT and ATC in equations (16) and (17) can be estimated
consistently under weaker assumptions than the unconditional ATE
in equation (11). Full ignorability, as specified in equation (15), need
not obtain. Suppose instead that only a subset of the variables in S is
observed, denoted by X . If partial ignorability holds with respect to X ,
such that

Y 0 |= D |X, (18)

then conditioning on X generates a consistent estimate of the ATT. The
basic idea is that, on average within strata defined by X , the values of yi

among those in the control group can be used to consistently estimate
the counterfactual values of y0

i for those in the treatment group. The
opposite also obtains. If partial ignorability holds in the other direction,
such that

Y 1 |= D |X, (19)

then the ATC can be estimated consistently because the values of yi

among those in the treatment group can be used to consistently estimate
the counterfactual values of y1

i for those in the control group, on average
within strata defined by X .

5.2. Why Would the Diagnostic Routine Succeed in Identifying
Consequential Causal Effect Heterogeneity?

To provide a justification for the diagnostic routine, we pose and then
answer three questions.

Question 1: When would potential-outcome-defined, individual-level
causal effects generate population-level patterns where the ATT differs
from the ATC? The ATT will differ from the ATC whenever one or
more variables predict both treatment group membership D and vari-
ation in the individual-level treatment effect δ. If such a variable has
a positive relationship with both D and variation in δ, then it is often
referred to as “positive selection.” The classic case here is ability bias
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in the estimate of the causal effect of college education on subsequent
earnings in the labor market. High ability individuals are thought to be
more likely to enter college and more likely to learn marketable skills
while in college. In cases of positive selection, the ATT is larger than the
ATC.

The opposite pattern is common as well. For what is often re-
ferred to as “negative selection,” the variable that generates the het-
erogeneity has a positive relationship with D but a negative relationship
with variation in δ. It generates a larger ATC than ATT. For an example,
consider the Catholic schooling effect again.18 Based on past research,
there are at least three possible explanations for why we might expect
that the ATC would be larger than the ATT for the effect of Catholic
schooling:

1. The common school explanation: Catholic schools distribute op-
portunities for learning, such as advanced course-taking, more eq-
uitably than do public schools. This explanation was stressed by
Coleman and colleagues in their initial research and was then more
comprehensively developed by Bryk, Lee, and Holland (1993). It
suggests that variables such as parental education and nonminority
status have positive relationships with D but negative relationships
with the variation in δ.

2. The better alternatives explanation: Catholic schooling is particu-
larly beneficial to those students who have poor public schooling
alternatives, in particular those students from families who are not
able to afford to live in school districts with the best public schools.
This explanation was first fully developed by Neal (1997), and it sug-
gests that variables such as family income and wealth have positive
relationships with D but negative relationships with the variation
in δ.

3. The binding constraint explanation: Differential responsiveness ex-
ists to accurate perceptions of students’ likely benefits from Catholic
schooling. For low-income families for whom tuition at a Catholic
school represents a genuine financial sacrifice, the only students
who enroll in Catholic schools are those students who are especially
likely to benefit from enrolling. In contrast, among high-income
families for whom tuition is not a substantial financial sacrifice,

18For an alternative example, which lines up nicely with the positive selec-
tion example just given, see Brand and Xie (2007).
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even students who are not likely to benefit from attending Catholic
schooling instead of public schooling may enroll in Catholic schools.
This explanation is discussed in Morgan (2001), and it is based on
the assumption that there is heterogeneity in δ that students and
their parents can forecast. Because tuition is costly, and relatively
more so for those from resource-poor families, it takes a larger value
of δ to induce low-income students to enroll in Catholic schooling.
As a result, variables that capture resource availability have positive
relationships with D but negative relationships with the variation in
δ among those who enter Catholic schooling.

Although these explanations may appear straightforward, they are not.
In this case (which is not unusual in our reading of the applied literature),
the true variables that generate the heterogeneity are unobserved, even
though the explanation for the heterogeneity is constructed around a
surface narrative that can be pegged to variables that are observed.

For the common school explanation, the negative relationship
between parental education and variation in δ is produced by differences
between Catholic and public schools in their instructional practices,
which at least for Coleman had deeper sources in alternative ideological
beliefs about the capacities of children. In this case, parental education
serves as a proxy for the more fundamental unobserved variables that
structure the variation in δ.

For the better alternatives explanation, family income and wealth
are proxies for the concrete but unobserved public schooling alterna-
tives that are available to relatively low-income and wealth-constrained
Catholic school students and that structure the variation in δ. The com-
plication here is that we need to know the characteristics of the choice
sets of all students, not merely the characteristics of the public schools
that Catholic school students would have attended according to their res-
idential location. Had Catholic school students not enrolled in Catholic
schools, their parents might instead have chosen to move to better public
school districts.

Finally, for the binding constraint explanation, the heterogeneity
in δ may not be exogenous, as it could be a function of mental ability
or taste for a religious educational environment. Moreover, the binding
constraint itself is not solely a function of potentially available family
income but instead includes other behavioral components, such as the
valuation of alternative uses of the same resources and variation across
Catholic schools in financial aid programs.
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Question 2: Will the diagnostic routine reveal differences in the ATT and
the ATC in a sample of sufficient size? In answering this question, we
first discuss three separate cases based on assumptions about the treat-
ment selection/assignment process, depicting the expected results that
we would obtain in each situation. Thereafter, we discuss the possibil-
ities for false positive and negative diagnoses with reference to these
three cases.

1. Full ignorability. Suppose that full ignorability in equation (15) holds
because the variables utilized as X in the routine are equivalent to
the variables defined as S in equation (13). In this case, weighted
regression using w i, ATT generates a consistent estimate of the ATT,
and weighted regression usingw i, ATC generates a consistent estimate
of the ATC. Thus, if the estimates are judged substantively different,
then this result is direct evidence that consequential causal effect
heterogeneity is present.

2. Partial ignorability. Suppose that full ignorability in equation (15)
does not hold because the variables utilized as X in the routine are a
subset of the variables defined as S for equation (13). But, suppose
that X is sufficiently predictive of treatment selection/assignment
that one of the two forms of partial ignorability in equations (18)
and (19) holds. Weighted regression using w i, ATT and w i, ATC will
generate a consistent estimate of either the ATT or the ATC, de-
pending on whether equation (18) or (19) holds. In this situation,
the estimates yielded by w i, ATT and w i, ATC will almost always differ
because the unobserved variables that generate the partial nonignor-
ability will be related to the observables that determine treatment
selection/assignment. As a result, if the estimates using w i, ATT and
w i, ATC differ, there is good reason to believe that there is a genuine
difference between the true ATT and the true ATC. (But see Sec-
tion 5.3 for a discussion of the prospect of false diagnoses generated
by rare patterns of unobserved variables.)

3. Nonignorability. Suppose that neither full ignorability nor partial
ignorability of any form holds. In this case, weighted regression
results using w i, ATT and w i, ATC that generate two substantively dif-
ferent average causal effect estimates suggest at least one of the two
following conclusions, based on how far from full ignorability the
conditioning variables in X render the estimation challenge:
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a. Even though the variables in X are not rich enough to sustain as-
sumptions of ignorability of any form, enough of the process of
treatment selection/assignment has been modeled such that the
substantive difference in the weighted regression results using
w i, ATT and w i, ATC is supportive of the conclusion that conse-
quential causal effect heterogeneity is present. In other words,
even though consistent estimates of the ATT and the ATC are
unavailable, the models are sufficiently rich to conclude that it
is sufficiently unlikely that the mismatch of the two estimates
is entirely attributable to differential departures from assump-
tions of partial ignorability.

b. Treatment selection/assignment is so incompletely accounted
for by the variables used in X in the original unweighted regres-
sion model that there is no basis for concluding anything about
the nature or direction of a difference between the ATT and
the ATC. As a result, assumptions of causal effect homogeneity
(or completely random individual-level heterogeneity) have no
empirical support, and the weaker assumption of consequential
heterogeneity is more reasonable.

Question 3: Are there cases in which the diagnostic routine will gener-
ate false positive or false negative diagnoses? Generic sampling error
and misleading past research could prompt researchers to mistakenly
accept or reject that weighted regression estimates using w i, ATT and
w i, ATC differ. In this case, they would mistakenly conclude that conse-
quential causal effect heterogeneity is present when in fact it is not (and
vice versa). Similar possibilities are present in nearly all data analysis
situations in which conclusions about features of a population are based
on data from samples drawn from the population. We do not have rea-
son to believe that the routine is unusually vulnerable to false diagnoses
of this sort.

However, there are some additional considerations beyond these
generic inferential issues when full ignorability of treatment selection/
assignment cannot be maintained. In the cases of partial ignorability
and complete nonignorability, the presupposition that unobserved vari-
ables are at play creates additional complications.

Consider first the case of partial ignorability, as sustained by
the adoption of the assumption in either equation (18) or (19). It
is theoretically possible that the unobserved variables that generate
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nonignorability are completely independent of the observed variables
that determine treatment selection/assignment and yet are related to
the variation in individual-level causal effects. This would be the case
if individual-level causal effects were completely random, and yet in-
dividuals entered into the treatment group in part based on accurate
expectations of their own individual-level treatment effects. In this un-
likely case, the estimates yielded by w i, ATT and w i, ATC could be nearly
the same, even in an infinite sample and even though the true ATT and
ATC could be very different. Again, this scenario is unlikely, since it
would be rare for the following to be true: (1) the data are rich enough
such that partial ignorability obtains, (2) the crucial unobserved vari-
ables that prevent full ignorability from being asserted are (a) completely
independent of the variables in the conditioning set X and (b) related
to the variation in individual-level causal effects.

In the case of complete nonignorability, the data are substantially
less rich in the sense that the variables in the conditioning set X may be
a small subset of S. In this case, it is more likely that the crucial unob-
served variables that relate individual-level causal effects to treatment
selection/assignment will have a weak relationship or no relationship
to the variables in X .

Nonetheless, the fragility of the routine in these circumstances
should not obscure the main point of the routine. If, for example, the
regression estimates yielded when using w i, ATT and w i, ATC were very
similar and yet researchers had reason to believe that treatment selec-
tion/assignment is nonignorable, it would be rather audacious to then
decide to present their baseline regression estimates and declare that,
although they are not consistent estimates of the ATE, ATT, or ATC,
it is reasonable to proceed as if homogeneity of individual-level causal
effects is present.

5.3. The Diagnosis for the Demonstration Reconsidered with Reference
to the Counterfactual Model

For two reasons, it is clear that in the Catholic school demonstration
full ignorability of treatment selection/assignment cannot be safely
assumed. First, sufficient evidence exists to suggest that some Catholic
school students attend Catholic schools because they expect to gain
from doing so. Because the ELS data do not have measures of these
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expectations, the demonstration represents a case in which full ignora-
bility cannot be maintained. In essence, expectations of the causal effect
are a variable in S in equation (15), and this variable is not available for
inclusion in X .

Second, the results presented in the diagnostic routine indicate
that 23 percent of public school students (i.e., 2739 out of 12,025) have
estimated propensity scores lower than the lowest estimated propen-
sity score of any Catholic school student. A comparison of the results
in Tables 2 and 4 suggests that this lack of overlap is relatively incon-
sequential for the empirical results of the diagnostic routine, and yet
this provides only modest reassurance that the data can inform us of
the likely benefit that these 23 percent of public school students would
obtain from attending a Catholic school.

At best, it would seem that only partial ignorability holds in the
direction where equation (18) is valid for the variables in X available to us
(which means that partial ignorability in equation [19] does not hold). As
a result, the weighted regression models that utilize w i, ATT may deliver
a consistent estimate of the average causal effect of Catholic schooling
among Catholic school students (i.e., the ATT), but the weighted re-
gression models that utilize w i, ATC do not deliver a consistent estimate
of the average causal effect of Catholic schooling among public school
students (i.e., the ATC).

If partial ignorability is present and the data deliver a consistent
estimate of the ATT that is substantially different from the estimate
of the ATC (even though the estimate of the ATC is biased and in-
consistent), we can conclude based on the reasoning in the last section
that consequential heterogeneity is present because there is a sufficiently
strong likelihood that the true ATT and the true ATC differ meaning-
fully. In particular, because the unobserved variables that are part of
the binding constraint explanation and the better alternatives expla-
nation noted earlier are related to observable variables such as family
income, the revealed difference between the estimates that use w i, ATT

and w i, ATC reflects, to some substantial extent, an underlying pattern of
heterogeneity that causes the true ATC to be larger than the true ATT.19

19In addition, the common support results reported in Table 4 show that
the heterogeneity exists in the region of overlap, suggesting that individuals in the
treatment group who are most similar to those in the control group have a different
average causal effect than those in the treatment group who are least similar to those
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If treatment selection/assignment is nonignorable—such that
none of the assumptions in equations (15), (18), or (19) is valid—then
neither the ATT nor the ATC can be consistently estimated with the
data. Without any evidence that differential departures from partial
ignorability could have generated the results, we would argue that it is
most reasonable to accept the prima facie interpretation that differing es-
timates based on w i, ATT and w i, ATC represent substantial evidence that
consequential causal effect heterogeneity is present. Again, we would
argue that it is reasonable to conclude that the difference between the
estimates reflects a true difference between the ATT and the ATC for
the same reasons stated for the scenario in which partial ignorability is
assumed.20

Thus, in this application of the routine, the case for consequential
heterogeneity is quite strong. Accordingly, it is reasonable to conclude
that the baseline regression results mask consequential heterogeneity.

5.4. Applicability of the Routine in Other Situations

The diagnostic routine presented in this paper can be modified for alter-
native research situations. In most cases, the logic of the routine carries
over directly to these scenarios, but the practical implementation of the
routine must be changed.

If the outcome variable is not interval scaled, or cannot be
treated as such, then the basic steps of the routine can be enacted,
substituting a different response model for the linear regression equa-
tions. The existing methodological literature provides little guidance on
how exactly individual-level causal effects are weighted in these situa-
tions, but it seems clear that analogs to conditional-variance weighting
are likely to prevail. Much depends on how causal effects are defined
with reference to potential outcomes, and clearly the linear-difference
definition in equation (10) will be the wrong starting point in most
cases.

in the control group. Thus, the difference that is revealed by alternative estimates
based on w i, ATT and w i, ATC is not produced by reckless comparison of perhaps
fundamentally incomparable cases.

20And, even if this judgment were not acceptable to a fair critic, such a
critic would presumably also agree that it would be foolhardy to rely only on the
baseline regression results for all subsequent interpretation.
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For many-valued causes, the challenges are mostly practical. If
the number of states of the causal variable is modest, a series of two-way
comparisons between the multiple treatment states can be undertaken.
The diagnostic routine can be estimated for each two-way comparison,
following the basic procedures that are recommended for matching esti-
mators for many-valued causes (see Imbens 2000; Rosenbaum 2002). If
the number of states of the causal variable is large, then the causal states
can be collapsed in alternative ways for the sake of estimating the diag-
nostic routine. If a positive diagnosis arises, then selected categories can
be subdivided progressively to determine whether or not the diagnosis
is an artifact of the initial coarsening.

6. DISCUSSION

How should an analyst proceed if the diagnosis of consequential hetero-
geneity is positive? Many options are available within the counterfactual
modeling framework. All of these options are contingent on the type of
ignorability that holds. In some cases, a strategy to fully parameterize
the heterogeneity is available, and thus a respecification of the regres-
sion model is possible. In other cases, especially when issues of overlap
and support come to the foreground in the course of estimating the di-
agnostic routine, matching estimators can be deployed to enable a more
subtle (but perhaps limited) examination of the heterogeneity. There-
after, a regression model can be reverse-engineered from the matching
results if the analyst desires. Finally, it may even be the case that an in-
strumental variable is lurking within the variables that predict treatment
assignment, and if so the instrumental variable can be used to estimate
a meaningful component of the average treatment effect for the treated.
We discuss these options in this section.

6.1. Regression Options

If full ignorability obtains, then the two most obvious forms of conse-
quential heterogeneity have already been modeled by the weighted re-
gression results. It may be possible to offer better estimates of the ATT
and the ATC by fitting additional models of treatment assignment, us-
ing more intensive data mining techniques (see McCaffrey et al. 2004;
Diamond and Sekhon 2005). Thereafter, new weights can be constructed
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that may yield slightly different point estimates. However, any improve-
ments are likely to be small if, as in our demonstration, the balance
achieved by the final weights constructed in Step 6 of the diagnostic
routine is already very good.

In many research scenarios, having the best possible estimates
of the ATT and the ATC is all that might be desired. However, if full
ignorability can be asserted, then a deeper modeling of the underly-
ing heterogeneity is possible, and such modeling can be carried out by
respecifying the original regression model.

The first step for an analyst who seeks such deeper modeling is to
consider whether a comprehensive substantive story about the hetero-
geneity of the causal effect can be effectively parameterized by observed
individual-level variables. In the case of full ignorability, this should
be possible. Consider, for example, the regression equation presented
earlier as equation (2):

Y = a + bd D + b2 X2 + · · · + bkXk + e. (20)

Suppose that we have theoretical reasons to believe that the full set
of variables X 2 through X k must be conditioned on to guarantee full
ignorability, and yet we also have reason to believe that nonrandom
individual-level heterogeneity in the causal effect is dependent on X 2

alone. This would be the case if X 2 predicts D as well as individual-
level variation in the underlying causal effect δ whereas X 3 through Xk

predict D but are independent (individually and in any combination)
of individual-level variation in the causal effect δ. In this case, an un-
weighted regression model can be estimated that includes an interaction
term between X 2 and D, as in

Y = a + bd D + bd2(D × X2) + b2 X2 + · · · + bkXk + e. (21)

In this case, the expanded regression model would explicitly account for
the variability in the treatment effect across individuals.21 Estimates of
the ATT and ATC are then functions in bd and bd2, weighted differen-
tially by the distribution of X 2.

21Or, if there is no theory that suggests where the heterogeneity lies, we
can interact D with all of the variables in X , as in Brand and Halaby (2006) based
on the model suggested by Wooldridge (2002).
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How can we determine whether an expanded regression model of
this sort completely accounts for all consequential heterogeneity across
levels of the cause? If the data are extensive enough and the number of
categories is small enough in the adjustment variables that are thought to
account completely for the individual-level heterogeneity, then separate
unweighted regression models can be fit within strata defined by these
adjustment variables. For example, if the expanded regression model
were the one presented in equation (21), then the regression model in
equation (20) would be estimated separately for each value of X 2 (and
X 2 would then drop out of each regression model because it would be
constant within each of them, resulting in a separate model Y = a +
bdD + b3 X3 + · · · + bkXk + e for each value of X 2). The diagnostic
routine can then be applied to the models for each of the strata in order
to check whether evidence of consequential heterogeneity remains under
the new specification. If consequential heterogeneity then reappears
within one or more strata, then the expanded regression model that is
currently being assessed must be expanded further, and so on. If, on the
contrary, the diagnostic routine does not reveal any heterogeneity within
any of the strata, then the expanded regression model can be offered as
a comprehensive model that accounts for all systematic heterogeneity
of the causal effect.22

If such deeper modeling of heterogeneity is not possible, perhaps
because the individual-level variables that are available can be regarded
as nothing other than imperfect proxies for the underlying variables
that are truly driving the heterogeneity of the treatment effect, then the
situation is different. In this case, there is good reason to doubt that an
assumption of full ignorability is valid.

Under these circumstances, and in the more common situation
in which theory alone suggests that full ignorability does not hold, an-
alysts should first concede that not all average causal effects can be
estimated effectively with the available data. Instead, the prospects of
partial ignorability should be assessed.

22A complication of this strategy is the implementation of Step 8 in the
diagnostic routine. Each time the sample is subdivided, the diagnostic routine loses
power to detect consequential heterogeneity. This implies that, if we subdivide the
sample enough, we can always reach a level where rigid null hypotheses of homo-
geneity cannot be rejected. Although we might regard this as a weakness of the
diagnostic routine, in our judgment it is a reminder that rigid hypothesis testing can
ruin sound scientific judgment.
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If partial ignorability obtains, appropriate weighted regression
models should be estimated for the identified average effect. Deeper
modeling of the heterogeneity beneath the ATT or the ATC is possi-
ble via the expanded regression approach just outlined for the case of
full ignorability. However, it can easily become conceptually difficult
to determine how best to specify a set of interactions designed to pick
up heterogeneity of individual-level causal effects within the treatment
group or the control group, knowing that in the end we will need to
estimate a weighted regression model anyway in order to align the data
with the target parameter of interest. In these cases, shifting toward the
matching methods that we discuss next may be more natural.

In cases where no form of ignorability is valid, the goals of the
analysis should change. Descriptive regression results and analyses of
the bounds of causal effects can be very useful for guiding future data
collection and for undermining the unwarranted causal claims of other
researchers. Providing defendable causal effect estimates will probably
not be possible, but much useful analysis can still be offered. It is possi-
ble, for example, that progress can be advanced by the matching methods
we discuss next, as these can help to describe the estimation challenges
that arise from fundamental incompatibilities between some treatment
and control cases.

6.2. Matching Options

Multivariate matching methods, such as propensity score matching, can
also be used to directly model the heterogeneity of the average treatment
effect (see Rubin 2006 for a comprehensive review of matching meth-
ods and Morgan and Winship [2007, chs. 4 and 5] for a review written
for sociologists). Matching methods are a valuable alternative to re-
specification of the original regression model if concerns about support
and overlap are substantial (as would be revealed in the last step of the
diagnostic routine).

Although matching and regression methods are not as distinct
as is sometimes claimed in the applied literature, matching methods are
uniquely valuable in forcing the analyst to consider whether the data
can sustain a causal analysis that seeks to identify either the ATT or
the ATC. Often, estimation of neither is possible because the support
of the adjustment variables differ for the treated and for the controls, as
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is the case when the range of the propensity score differs substantially
for the treatment and control groups. In such cases, conditional average
treatment effects can be estimated for segments of the propensity score
that lie within the region of overlap. There are many examples of this
strategy, and in sociology Morgan (2001) uses this approach in an anal-
ysis of the Catholic school effect. He estimates the average causal effect
for quintiles of the propensity score for the treated. In a different ap-
plication, Xie and Wu (2005) estimate average treatment effects across
strata of the entire range of the propensity score.

6.3. Instrumental Variable Options

As Heckman and Vytlacil (2005) show, instrumental variables permit
direct and comprehensive modeling of the heterogeneity of average treat-
ment effects in idealistic data availability scenarios. They demonstrate
how local instrumental variables that qualify for inclusion in an index
structure model of treatment selection can be used to estimate marginal
treatment effects. These effects can then be used to calculate a wide
range of average treatment effects that are functions of the propensity
score (see Morgan and Winship [2007, sec. 7.5.1] for an explanation of
the argument).

The diagnostic routine proposed in this article would lead us to
estimate marginal treatment effects via local instrumental variables if
such instrumental variables were available.23 We know of no application
in which local instrumental variables have been available to estimate all
marginal treatment effects of interest. In contrast, when convincing in-
strumental variables have been utilized (see Angrist and Krueger [2001]
for a list of such cases and Rosenzweig and Wolpin [2000] for a critical
review of these cases), the instrumental variables usually identify very
narrow average treatment effects for small subsets of the population.
And, in most applications, instrumental variables are simply not avail-
able. Thus, although it would be comforting to believe that it is practical

23In our setup, local IVs would be available if it was suddenly discovered
that it could be assumed that one of the variables in X has no effect on the out-
come variable except indirectly through D, has a strictly monotonic effect on D,
and predicts the full observed range of the probability of treatment assignment.
These conditions would typically arise only when there is a single variable in X that
comprehensively accounts for the full pattern of treatment exposure and yet has no
effect on the outcome except via D.
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to model heterogeneity directly for most applications using instrumen-
tal variables, the history of applied research in the social sciences is
not encouraging. It seems most reasonable to conclude that instrumen-
tal variables will at times provide important insight into causal effect
controversies by estimating the average causal effects for potentially
important segments of the population. For practical data availability
reasons, they cannot be expected to serve as a general solution.

APPENDIX: DETAILS OF THE DEMONSTRATION

Poststratification and Attrition-Adjustment Weights

The complex sampling design of the ELS, where students are sampled
from schools that are themselves sampled unequally from alternative
population strata, necessitates the use of a poststratification weight de-
veloped by the data distributors. Moreover, for models in which twelfth
grade achievement is used for the outcome variable, we limit the anal-
ysis sample to respondents who did not transfer between schools and
who were enrolled in the twelfth grade at the time of the 2004 sur-
vey. This restriction results in a twelfth grade analysis sample of 1660
Catholic school respondents and 8842 public school respondents (for a
total N = 10,502). Because these 10,502 respondents are a nonrandom
subset of the 13,943 respondents in our base-year analysis sample, the
twelfth grade results incorporate a model-based adjustment for attrition
patterns.

We chose to adjust the data by estimating a logit model, from
which we then extracted the probability of being in the twelfth grade
and in the same school in 2004 as when initially sampled in 2002.24

24We estimated a multinomial logit model for the full sample where there
were nine destinations: (1) in school, in grade, nontransfer; (2) in school, in grade,
transfer, same sector; (3) in school, in grade, transfer, different sector; (4) in school,
out of grade, nontransfer; (5) in school, out of grade, transfer; (6) homeschooled,
out of scope; (7) early graduate; (8) dropout; (9) nonrespondent/status unknown.
The predictor variables included dummies for gender, race, urbanicity, region, and
family structure as well as variables for parents’ education, occupational prestige,
and family income. The model yielded a chi-squared test statistic of 1388.5 with
152 degrees of freedom, which indicates that these predictor variables account for a
substantial portion of the variation in trajectories. However, we then used only the
probability of being in category (1) to define the adjustment weight summarized
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We then formed a 2004 direct-adjustment weight that is the poststrati-
fication weight from the base-year 2002 data multiplied by the inverse
probability of being on-track in the twelfth and at the same school in
2004 as in 2002. Our twelfth grade models give disproportionately more
weight to individuals who were least likely to remain in our analysis
sample between 2002 and 2004. Thus, conditional on the suitability of
the underlying logit estimation of the probability of remaining in the
analysis sample, our twelfth grade results are interpretable as general-
izable estimates of what the patterns would have been in the twelfth
grade if all sophomores had stayed in the same school and progressed
to the twelfth grade between 2002 and 2004 (and all else remained the
same).

Estimation of Weighted OLS Models

Consider how these weights were utilized when estimating the regression
models. First, note that the OLS estimate δ̂OLS, bivariate in equation (3) is
the second element of the vector b̂OLS from

b̂OLS = (Q′Q)−1Q′y, (22)

where (1) Q is an n × 2 matrix that contains a vector of 1s in its first
column and a vector of the values of d i for each individual in its second
column and (2) y is an n × 1 column vector containing values of yi for
each individual.

To generate the OLS estimate δ̂OLS, multiple in equation (4), equa-
tion (22) still obtains, but the matrix Q is augmented so that it is n ×
k + 2, where the first column is a vector of 1s, the second column is
a vector of the values of d i for each individual, and the remaining k
columns are vectors of the values of xi for each of the k variables in X
in equation (4).

To estimate weighted OLS regression using weights such as
w i, ATT and w i, ATC from equations (6) and (7), the estimator in equation
(22) is augmented to form a weighted ordinary least squares estimator:

in the main text. Thus, patterns of movement between the other categories were
examined only to make sure that the predictor variables were sorting the sample in
expected ways (i.e., to verify that parental education is more strongly predictive of
retention and dropout than of homeschooling, and so on).
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b̂OLS, weighted = (Q′PQ)−1Q′Py, (23)

where P is an n × n diagonal matrix with either w i, ATT or w i, ATC along
the diagonal.

For the Catholic school effect demonstration, the complex sam-
ple design required that the weighted OLS estimator in equation (23)
be used throughout. For the models in the first column of Tables 2, 4,
and 6, the tenth grade models were estimated with a weight matrix P,
where the diagonal is the poststratification weight. For the twelfth grade
models and the math gain models, the diagonal of the weight matrix P
is the poststratification weight × attrition-adjustment weight.

For the estimation of the average treatment effects for the treated
and the controls in the second and third columns of Tables 2, 4, and 6,
the tenth grade models were estimated with a weight matrix P, where the
diagonal is the poststratification weight × w i, ATT or w i, ATC. And, for
the twelfth grade models and the math gain models, the diagonal of the
weight matrix P is the poststratification weight × attrition-adjustment
weight × w i, ATT or w i, ATC.

Estimation of Standard Errors

For the standard errors of all regression estimates, we calculated
heteroskedastic-consistent standard errors with a supplemental adjust-
ment for the clustering of students within schools (using Stata’s robust
option in its regression routine along with the tenth grade school ID as
a cluster identifier). The estimated standard errors are therefore com-
parable across columns.

We make no adjustment to account for the fact that the weights
w i, ATT and w i, ATC are based on an estimated quantity, the propensity
score. In the counterfactual causality literature, this complication is
often a topic of concern, as it is argued that the estimation error in the
propensity score should propagate to the standard error of the estimated
causal effect. Although we recognize that we have not accounted for this
source of uncertainty in our causal effect estimates, we find comfort in
two sources: (1) even though the poststratification weight offered to us
by the data distributors is estimated, such weights are routinely treated
as known by nearly all researchers who use them, and (2) the sandwich
variance estimator that we utilize should be able to implicitly adjust
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for any differential clustering on the variables in X that is induced by
weighting based on w i, ATT or w i, ATC. Nonetheless, work remains to be
done within the statistics literature on how to estimate the variances of
these types of estimators.
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