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As the counterfactual model of causality has increased in popularity, sociolo-

gists have returned to matching as a research methodology. In this article,

advances over the past two decades in matching estimators are explained, and

the practical limitations of matching techniques are emphasized. The authors

introduce matching methods by focusing first on ideal scenarios in which stra-

tification and weighting procedures warrant causal inference. Then, they dis-

cuss how matching is often undertaken in practice, offering an overview of the

most prominent data analysis routines. With four hypothetical examples, they

demonstrate how the assumptions behind matching estimators often break

down in practice. Even so, the authors argue that matching techniques can be

used effectively to strengthen the prosecution of causal questions in sociology.
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he counterfactual, or ‘‘potential outcomes,’’ model of causality offers

new possibilities for the formulation and investigation of causal ques-

tions in sociology. In the language of Holland (1986), the counterfactual

perspective shifts attention from the identification of the ‘‘causes of effects’’

toward the more tractable goal of estimating the ‘‘effects of causes.’’

Accordingly, the primary goal of causal analysis becomes the investigation

of selected effects of a particular cause, rather than the search for all
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possible causes of a particular outcome along with the comprehensive esti-

mation of all of their relative effects.

The rise of the counterfactual model to prominence has increased the

popularity of data analysis routines that are most clearly useful for estimat-

ing the effects of causes. The matching estimators that we review and

explain in this article are perhaps the best example of a classic technique

that has reemerged in the past two decades as a promising procedure for

estimating causal effects. Matching represents an intuitive method for

addressing causal questions, primarily because it pushes the analyst to con-

front the process of causal exposure as well as the limitations of available

data. Accordingly, among social scientists who adopt a counterfactual per-

spective, matching methods are fast becoming an indispensable technique

for prosecuting causal questions, even though they usually prove to be the

beginning rather than the end of causal analysis on any particular topic.

Yet while empirical examples that demonstrate the potential utility of

matching methods are accumulating, the methodological literature has

fallen behind in providing an up-to-date treatment of the fundamentals of

matching, the recent developments in practical matching methodology,

and sober assessments of the strengths and weaknesses of the techniques.

The purpose of this article is to provide a starting point for those sociolo-

gists who are sophisticated users of other quantitative methods and who

want to understand matching methods, either to consider using matching

methods in their own work or to teach matching methods in graduate

methods courses. Although our agenda is primarily explanatory, we also

make the case that matching techniques should be used with considerable

caution and not to the exclusion of other more established methods. Even

so, we see considerable promise in the usage of matching techniques to

strengthen the prosecution of causal questions in sociology.

We begin with a brief discussion of the past use of matching methods.

Some sociologists may be surprised to learn that the sociological literature

contains some of the early developments in matching methodology. We

then outline the key ideas of the counterfactual model of causality, with

which most matching methods are now motivated. Then, we present the

fundamental concepts underlying matching, including stratification of the

data, weighting to achieve balance, and propensity scores. Thereafter, we

discuss how matching is usually undertaken in practice, including an over-

view of various matching algorithms. Finally, we discuss how the assump-

tions behind matching estimators often break down in practice, and we

present some of the remedies that have been proposed to address the

resulting problems.
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In the course of presentation, we offer four hypothetical examples that

demonstrate some of the essential claims of the matching literature, pro-

gressing from idealized examples of stratification and weighting to the

implementation of alternative matching algorithms on simulated data

where the treatment effects of interest are known by construction. As we

offer these examples, we add real-world complexity to demonstrate how

such complexity can rapidly overwhelm the power of the techniques. We

adopt this strategy to move beyond the sanguine methodological literature

on matching, which has insufficiently demonstrated the particular weak-

nesses of matching techniques.

Origins and Motivations for Matching

Matching techniques have origins in experimental work from the first half

of the twentieth century. Relatively sophisticated discussions of matching

as a research design can be found in early methodological texts in socio-

logy (see Greenwood 1945) and also in attempts to adjudicate between

competing explanatory accounts in applied demography (Freedman and

Hawley 1949). This early work continued in sociology (e.g., Althauser

and Rubin 1970, 1971; Yinger, Ikeda, and Laycock 1967), right up to

the key foundational literature in statistics (Rubin 1973a, 1973b, 1976a,

1976b, 1977, 1979, 1980) that provided the conceptual foundation for the

new wave of matching techniques that we present in this article.

In the early 1980s, matching techniques, as we conceive of them now,

were advanced in a set of papers by Rosenbaum and Rubin (1983a, 1984,

1985a, 1985b) that offered solutions to a variety of practical problems that

had limited matching techniques to very simple applications in the past.

Variants of these new techniques found some use immediately in sociol-

ogy (Berk and Newton 1985; Berk, Newton, and Berk 1986; Hoffer, Gree-

ley, and Coleman 1985), continuing with work by Smith (1997). In the

late 1990s, economists joined in the development of matching techniques

in the course of evaluating social programs (e.g., Heckman, Ichimura, and

Todd 1997, 1998; Heckman, Ichimura, Smith, and Todd 1998; Heckman,

LaLonde, and Smith 1999). New sociological applications are now accu-

mulating (DiPrete and Engelhardt 2004; DiPrete and Gangl 2004; Harding

2003; Morgan 2001), and we expect that matching will complement other

types of modeling in sociology with greater frequency in the future.

In the methodological literature, matching is usually introduced in one

of two ways: (1) as a method to form quasi-experimental contrasts by

Morgan, Harding / Estimators of Causal Effects 5



sampling comparable treatment and control cases from among two larger

pools of such cases or (2) as a nonparametric method of adjustment for

treatment assignment patterns when it is feared that ostensibly simple

parametric regression estimators cannot be trusted.

For the first motivation, the archetypical example is an observational

biomedical study where a researcher is called upon to assess what can be

learned about a particular treatment. The investigator is given access to

two sets of data, one for individuals who have been treated and one for

individuals who have not. Each data set includes a measurement of current

symptoms, Yi, and a set of characteristics of individuals, as a vector of

variables Xi, that are drawn from demographic profiles and health his-

tories. Typically, the treatment cases are not drawn from a population via

any known sampling scheme. Instead, they emerge as a result of the distri-

bution of initial symptoms, patterns of access to the health clinic, and then

decisions to take the treatment. The control cases, however, may represent

a subsample of health histories from some known data set. Often, the

treatment is scarce, and the control data set is much larger than the treat-

ment data set.

In this scenario, matching is a method of strategic subsampling from

among treated and control cases. The investigator selects a nontreated

control case for each treated case based on the characteristics in Xi. All

treated cases and matched control cases are retained, and all nonmatched

control cases are discarded. Differences in Yi are then calculated for trea-

ted and matched cases, with the average difference serving as the treat-

ment effect estimate for the group of individuals given the treatment.1

The second motivation has no archetypical substantive example, as it is

similar in form to any attempt to use regression to estimate causal effects

with survey data. Suppose, for a general example, that an investigator is

interested in the causal effect of an observed dummy variable, Di, on an

observed outcome, Yi. But, it is known that a simple bivariate regression,

Yi =α+ γDi + εi, will yield an estimated coefficient γ̂ that is a biased and

inconsistent estimate of the causal effect of interest because the causal

variable Di is associated with variables embedded in the error term, εi.

For a particular example, if Di is the receipt of a college degree and Yi is a

measure of economic success, then the estimate of interest is the causal

effect of obtaining a college degree on subsequent economic success.

However, family background variables are present in εi, which are corre-

lated with Di, and this relationship produces classical omitted variables

bias for a college degree coefficient estimated from a bivariate ordinary

least squares (OLS) regression of Yi on Di.
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In comparison to the biomedical example just presented, this motivation

differs in two ways: (1) in most applications of this type, the data represent

a random sample from a well-defined population, and (2) the common prac-

tice in the applied literature is to use regression to estimate effects. For the

education example, a set of family background variables in a vector Xi is

assumed to predict both Di and Yi. The standard regression solution is to

estimate an expanded regression equation: Yi =α+ γDi + β0Xi + εi. With

this strategy, the goal is to estimate simultaneously the causal effects of Xi

and Di on the outcome, Yi; which may be possible because the sample is

randomly drawn from a known population.

In contrast, a matching estimator nonparametrically balances the variables

in Xi across Di solely in the service of obtaining the best possible estimate of

the causal effect of Di on Yi. The most popular technique is to estimate the

probability of Di for each individual i as a function of Xi and then to select

for further analysis only matched sets of treatment and control cases that con-

tain individuals with equivalent values for these predicted probabilities. This

procedure results in a subsampling of cases, comparable to the matching pro-

cedure described for the biomedical example, but for a single dimension that

is a function of the variables in Xi. In essence, the matching procedure throws

away information from the joint distribution of Xi and Yi that is unrelated to

variation in the treatment variable Di until the remaining distribution of Xi is

equivalent for both the treatment and control cases. When this equivalence is

achieved, the data are said to be balanced with respect to Xi. Under main-

tained assumptions that we will introduce later, the remaining differences in

the observed outcome between the treatment and matched control cases can

then be regarded as attributable solely to the effect of the treatment.

For the remainder of this article, we will adopt this second scenario, as

research designs in which data are drawn from random-sample surveys

are much more common in sociology. Thus, we will assume that the data

in hand were generated by a relatively large random-sample survey, where

the proportion and pattern of individuals who are exposed to the cause are

fixed in the population by whatever process generates causal exposure.

Moreover, we will assume for our presentation that the variables in the

data are measured without error.2

Counterfactuals and Causal Effects

Although matching can be seen as an extension of the tabular analysis of

simple three-way cross-classifications (i.e., outcome variable by causal
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variable by adjustment variable), the current literature is primarily asso-

ciated with counterfactual models of causality.3 Accordingly, from here

onward, we adopt the language that dominates this framework, writing of

the causal variable of interest as a treatment variable. And, as will become

apparent latter, we confine most of our attention to binary treatments, gen-

erally referring to the group that receives the treatment as the treatment

group and the group that does not as the control group.4 One could, how-

ever, rewrite all that follows referring to such groups as those who are

exposed to the cause and those who are not.

Causal Effects of Primary Interest

In the counterfactual framework, we approach causal inference by first

stipulating the existence of two potential outcome random variables that

are defined over all individuals in the population. Y1
i is the potential out-

come in the treatment state for individual i, and Y0
i is the potential out-

come in the control state for individual i. The individual-level causal

effect of the treatment is then defined as

δi = Y1
i − Y0

i : ð1Þ

Because we can never observe the potential outcome under the treatment

state for those observed in the control state (and vice versa), we can never

know the individual-level causal effects in equation (1).5 This predica-

ment is sometimes labeled the fundamental problem of causal inference

(Holland 1986). Instead, we can only observe values for a variable Yi,

which is related to the potential outcomes of each individual by

Yi =Y1
i if Di = 1;

Yi =Y0
i if Di = 0;

where the binary variable, Di, is equal to 1 if an individual receives the

treatment (i.e., is exposed to the cause) and equal to 0 if an individual

receives the control (i.e., is not exposed to the cause). This paired defini-

tion is generally written compactly as

Yi =DiY
1
i + ð1−DiÞY0

i : ð2Þ

Because it is usually impossible to effectively estimate individual-level

causal effects, we typically shift attention to aggregated causal effects.

With E½:� denoting the expectation operator from probability theory, the

average causal effect is

E½δi�=E½Y1
i �−E½Y0

i �. ð3Þ
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For equation (3), the expectation is defined with reference to the popu-

lation of interest, and the conditioning on i is redundant (because the cau-

sal effect of a randomly selected individual from the population is equal to

the average causal effect across individuals in the population). Nonethe-

less, as with most other work in the counterfactual framework, we will

preserve conditioning on i in our notation for causal effects, as it rein-

forces the inherent individual-level heterogeneity of potential outcomes

and causal effects.

Although the unconditional average treatment effect is the most com-

mon subject of investigation in sociology, more narrowly defined average

treatments are of interest as well, as we show in the examples later. The

average treatment effect for those who take the treatment is

E½δijDi = 1�=E½Y1
i jDi = 1�−E½Y0

i jDi = 1�; ð4Þ

and the average treatment effect for those who do not take the treatment

is

E½δijDi = 0�=E½Y1
i jDi = 0�−E½Y0

i jDi = 0�: ð5Þ

As will become clear, in many cases, only one of the two average treat-

ments effects in equations (4) and (5) can be estimated consistently, and

when this is the case, the overall average treatment effect in equation (3)

cannot be estimated consistently.

Other average causal effects (or more general properties of the distri-

bution of causal effects) are often of interest as well, and Heckman

(2000), Manski (1995), Rosenbaum (2002), and Pearl (2000) all give full

discussions of the variety of causal effects that may be relevant for differ-

ent types of applications. In this article, we focus almost exclusively on

the three types of average causal effects represented by equations (3), (4),

and (5).

Naive Estimation of Causal Effects

Having introduced the notation of the counterfactual model, in this

section, we explain why matching may be necessary by demonstrating the

general weakness of what has become known as the ‘‘naive estimator’’ in

the literature. We also use this section to introduce notation for sample-

based quantities, which can then be related to the population-level expec-

tations of the last section, as well as the general large-sample inference

framework that we use throughout our presentation.
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For this section, we assume that randomization of the treatment

is infeasible in the unspecified application that is under consideration.

Instead, an autonomous fixed treatment selection regime prevails, where

π is the proportion of the population that takes the treatment instead of

the control. Thus, the value of π is fixed in the population by the behavior

of individuals, and it is unknown to the researcher.

We assume that the researcher has observed survey data from a rela-

tively large random sample of the population. For the sample expectation

of a quantity in a sample of size N, we will use a subscript on the expecta-

tion operator, as in EN ½:�: Accordingly, EN ½Di� is the sample mean of the

dummy treatment variable, EN ½YijDi = 1� is the sample mean of the out-

come for those observed in the treatment group, and EN ½YijDi = 0� is the

sample mean of the outcome for those observed in the control group.6 The

naive estimator of the average causal effect is then defined as

δ̂NAIVE ≡EN ½YijDi = 1�−EN ½YijDi = 0�; ð6Þ

which is simply the difference in the sample means of the observed out-

come variable Yi for the observed treatment and control cases in the full

sample (i.e., prior to any subsampling via a matching routine).

In the absence of randomization of the treatment, the naive estimator

rarely yields a consistent estimate of the average treatment effect because

it converges to a contrast, E½YijDi = 1�−E½YijDi = 0�; that is not equiva-

lent to any of the causal effects defined in the last section. To make this

clear, we can decompose the average causal effect as

E½δi�= fπE½Y1
i jDi = 1�+ ð1−πÞE½Y1

i jDi = 0�g
− fπE½Y0

i jDi = 1�+ ð1−πÞE½Y0
i jDi = 0�g:

ð7Þ

The average treatment effect is then a function of five unknowns: the

proportion of the population that is assigned to (or self-selects into) the

treatment, along with four conditional expectations of the potential out-

comes. Without introducing additional assumptions, we can consistently

estimate with observational data from a sample of the population only

three of the five unknowns on the right-hand side of equation (7).

We know that, for a very large random sample, the mean of the dummy

treatment variable Di would be equal to the true proportion of the popula-

tion that would be assigned to (or would select into) the treatment. More

precisely, we know that the sample mean of Di converges in probability

to π, which we write as

EN ½Di�−→p π. ð8Þ
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Although the notation of equation (8) may appear unfamiliar, the claim

is that, as the sample size N increases, the sample mean of Di approaches

the true value of π, which we assume is a fixed population parameter.

Thus, the notation −→p connotes convergence in probability for a

sequence of estimates over a set of samples where the sample size N is

increasing. We can offer similar claims about two other unknowns in

equation (7):

EN ½YijDi = 1�−→p E½Y1
i jDi = 1�; ð9Þ

EN ½YijDi = 0�−→p E½Y0
i jDi = 0�; ð10Þ

which indicate that the sample mean of the observed outcome in the treat-

ment group converges to the true average outcome under the treatment

state for those in the treatment group (and analogously for the control

group and control state).7

Unfortunately, however, there is no assumption-free way to effectively

estimate the two remaining unknowns in equation (7): E½Y1
i jDi = 0� and

E½Y0
i jDi = 1�. These are counterfactual conditional expectations: the aver-

age outcome under the treatment for those in the control and the average

outcome under the control for those in the treatment. Without further

assumptions, no estimated quantity based on observed data from a random

sample of the population would converge to the true values for these

unknowns.

Estimating Causal Effects Under Maintained

Assumptions About Potential Outcomes

What assumptions would suffice to enable consistent estimation of the

average treatment effect with observed data? There are two basic classes

of assumptions, which can be regarded as mirror images of each other:

(1) assumptions about potential outcomes for subsets of the population

defined by treatment status and (2) assumptions about the treatment

assignment/selection process in relation to the potential outcomes. For the

first type of assumption, we could assert the following two equalities:

Assumption 1: E½Y1
i jDi = 1�=E½Y1

i jDi = 0�; ð11Þ
Assumption 2: E½Y0

i jDi = 1�=E½Y0
i jDi = 0�; ð12Þ

and then substitute into equation (7) to reduce the number of unknowns

from the original five parameters to the three parameters that we know from

equations (8) through (10) can be consistently estimated with the data.
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For the second type of assumption, we could assert what has become

known as an assumption of the ignorability of treatment assignment (see

Rubin 1978). If the treatment Di is completely independent of the poten-

tial outcomes Y0
i and Y1

i (as well as any function of them, such as the dis-

tribution of δiÞ, then treatment assignment is ignorable.8 When treatment

assignment is ignorable in this sense, Assumptions 1 and 2 are implied.

For our presentation, asserting assumptions about average differences

in potential outcomes for subsets of the population, as in Assumptions 1

and 2, is often more straightforward than invoking assumptions about the

independence of treatment assignment from potential outcomes. Consider

the following two scenarios that demonstrate why, where first we note the

utility of ignorability assumptions in randomization research designs.

If Di is assigned by some completely random process in the population,

then treatment assignment is ignorable because Di is fully independent of

everything defined on the population before the treatment is applied

(i.e., Y0
i , Y1

i ; δi, etc.). Random treatment assignment justifies Assumptions

1 and 2 since, by the same reasoning, the average difference between

those in the treatment group and those in the control must be zero for both

Y0
i and Y1

i if full independence of Di is assumed. But it is somewhat more

natural to discuss the implications of randomization via ignorability

assumptions, as the randomization operation is the most prominent feature

of the research design. Accordingly, ignorability assumptions are com-

mon in discussions of matching in biostatistics where randomization is

widespread.

Now consider the sort of research designs that are most prevalent in the

social sciences. Here, randomization is infeasible, the outcome Yi has an

inherent metric of theoretical interest, and treatment assignment is more

often a process of self-selection (or nonrandom allocation) than assign-

ment by an autonomous randomizer. For this type of research, expecta-

tion-based assumptions such as Assumptions 1 and 2 are commonly used.

It is often more natural to directly assert Assumption 1 or Assumption 2

(or perhaps both) based on theoretical conjectures about the ‘‘what if’’

average levels of counterfactual potential outcomes for individuals if they

had been exposed to an alternative cause. Backing all the way up to an all-

encompassing assumption of ignorability of treatment assignment proves

unnatural (and is often unnecessary if one is only interested in estimating

either the average treatment effect for the treated or the average treatment

effect for the untreated).

In the remaining sections of this article, we present matching estimators

within the counterfactual framework we have introduced in this section.
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As we noted at the outset, matching is a set of techniques that can be moti-

vated in other ways. And, in fact, the classical matching literature is an

outgrowth of experimental methodology rather than the early potential

outcomes framework that now undergirds the counterfactual perspective.

Nonetheless, most of the work over the past three decades on matching

has been motivated with this framework for observational data analysis,

and thus we follow in this tradition.

Matching as Stratification

Having covered the preliminaries, in this section, we introduce matching

estimators in idealized research conditions. Thereafter, we proceed to a

discussion of matching in more realistic scenarios, which is where we

explain the developments of matching techniques that have been achieved

in the past three decades as well as the substantial problems that remain

and limit the ultimate usefulness of matching.

Estimating Causal Effects by Stratification

Suppose that those who take the treatment and those who do not are

very much unlike each other, and yet the ways in which they differ are

captured exhaustively by a set of observed treatment assignment/selection

variables S.9 For the language we will adopt in this article, knowledge

and observation of S allow for a ‘‘perfect stratification’’ of the data. By

‘‘perfect,’’ we mean precisely that individuals within groups defined by

values on the variables in S are entirely indistinguishable from each other

in all ways except for (1) observed treatment status and (2) completely

random shocks to the potential outcome variables. Under such a perfect

stratification of the data, even though we would not be able to assert

Assumptions 1 and 2, we would be able to assert conditional variants of

those assumptions:

Assumption 1-S: E½Y1
i jDi = 1; Si�=E½Y1

i jDi = 0; Si�; ð13Þ
Assumption 2-S: E½Y0

i jDi = 1; Si�=E½Y0
i jDi = 0; Si�: ð14Þ

These assumptions would suffice to enable consistent estimation of the

average treatment effect, as the treatment can be considered randomly

assigned within groups defined by values on the variables in S.10

Before we introduce an idealized example of stratification, first note why

everything works out so cleanly when a set of perfect stratifying variables
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is available. If Assumption 1-S is valid, then

E½δijDi = 0; Si�=E½Y1
i jDi = 0; Si�−E½Y0

i jDi = 0; Si�
=E½Y1

i jDi = 1; Si�−E½Y0
i jDi = 0; Si�:

ð15Þ

If Assumption 2-S is valid, then

E½δijDi = 1; Si�=E½Y1
i jDi = 1; Si�−E½Y0

i jDi = 1; Si�
=E½Y1

i jDi = 1; Si�−E½Y0
i jDi = 0; Si�:

ð16Þ

Both of the last two lines of equations (15) and (16) are identical, and

neither includes counterfactual conditional expectations. One can consis-

tently estimate the differences in the last two lines of equations (15) and

(16) if these assumptions hold and thus obtain consistent estimates of

treatment effects conditional on S. To then form consistent estimates of

alternative average treatment effects, one simply averages the stratified

estimates over the distribution of S, as we show in the following hypothe-

tical example.

Hypothetical Example 1

Consider a completely hypothetical example where Assumptions 1 and

2 cannot be asserted because positive self-selection ensures that those who

are observed in the treatment group are more likely to benefit from the

treatment than those who are not. But assume that a three-category perfect

stratifying variable S is available that allows one to assert Assumptions

1-S and 2-S. Moreover, suppose for simplicity of exposition that our sam-

ple is large enough such that sampling error is trivial. Therefore, we can

assume that the sample moments in our data equal the population moments

(i.e., EN ½YijDi = 1�=E½YijDi = 1� and so on).11

If it is helpful, for this example, the reader can think of Yi as a measure

of an individual’s economic success at age 40, Di as an indicator of

receipt of a college degree, and Si as a mixed family background and pre-

paredness-for-college variable that completely accounts for the pattern of

self-selection into college that is relevant for lifetime economic success.

Note, however, that no one has ever discovered such a variable as S for

this particular causal effect.12 For economy of space, however, we will

refer to these variables generically as S, Y , and D below.

Suppose now that, for our very large sample, the sample mean of the

outcome for those observed in the treatment group is 10:2, whereas the

sample mean of the outcome for those observed in the control group is

14 Sociological Methods & Research



4:4: In other words, we have data that yield EN ½YijDi = 1�= 10:2 and

EN ½YijDi = 0�= 4:4 and where the naive estimator would yield a value of

5:8 (i.e., 10:2− 4:4).

Consider, now, an underlying set of potential outcome variables and

treatment assignment patterns that could give rise to a naive estimate of

5:8. Table 1 presents the joint probability distribution of the treatment

variable D and the stratifying variable S in its first panel as well as expec-

tations, conditional on S, of the potential outcomes under the treatment

and control states. The joint distribution in the first panel shows that indi-

viduals with S equal to 1 are more likely to be observed in the control

group, individuals with S equal to 2 are equally likely to be observed in

the control group and the treatment group, and individuals with S equal to

3 are more likely to be observed in the treatment group.

As shown in the second panel of Table 1, the average potential out-

comes conditional on S and D imply that the average causal effect is 2 for

those with S equal to 1 or S equal to 2 but 4 for those with S equal to 3

(see the last column). Moreover, as shown in the last row of the table,

where the potential outcomes are averaged over the within-D distribution

Table 1

The Joint Probability Distribution and Conditional

Population Expectations for Hypothetical Example 1

Joint Probability Distribution of S and D

D= 0 D= 1

S= 1 Pr½S= 1;D= 0�= :36 Pr½S= 1;D= 1�= :08 Pr½S= 1�= :44

S= 2 Pr½S= 2;D= 0�= :12 Pr½S= 2;D= 1�= :12 Pr½S= 2�= :24

S= 3 Pr½S= 3;D= 0�= :12 Pr½S= 3;D= 1�= :2 Pr½S= 3�= :32

Pr½D= 0�= :6 Pr½D= 1�= :4

Potential Outcomes

Under the Control State Under the Treatment State

S= 1 E½Y0jS= 1�= 2 E½Y1jS= 1�= 4 E½Y1 � Y0jS= 1�= 2

S= 2 E½Y0jS= 2�= 6 E½Y1jS= 2�= 8 E½Y1 � Y0jS= 2�= 2

S= 3 E½Y0jS= 3�= 10 E½Y1jS= 3�= 14 E½Y1 � Y0jS= 3�= 4

E½Y0jD= 0�
= :36

:6 ð2Þ+ :12
:6 ð6Þ+ :12

:6 ð10Þ
= 4:4

E½Y1jD= 1�
= :08

:4 ð4Þ+ :12
:4 ð8Þ+ :2

:4 ð14Þ
= 10:2
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of S, E½Y jD= 0�= 4:4 and E½YjD= 1�= 10:2, matching the initial setup

of the example based on a naive estimate of 5:8 from a very large sample.

Table 2 shows what can be calculated from the data, assuming that S

offers a perfect stratification of the data. The first panel presents the sam-

ple expectations of the observed outcome variable conditional on D and

S. The second panel of Table 2 presents corresponding sample estimates

of the conditional probabilities of S given D. The estimated values are for

a very large sample, as stipulated earlier, such that sampling error is

infinitesimal.

The existence of a perfect stratification (and the availability of a very

large data set) ensures that the estimated conditional expectations in the

first panel of Table 2 match the population-level conditional expectations

of the second panel of Table 1. When stratifying by S, the average

observed outcome for those in the control/treatment group with a particu-

lar value of S is equal to the average potential outcome under the control/

treatment state for those with a particular value of S. Conversely, if S were

not a perfect stratifying variable, then the sample means in the first panel

of Table 2 would not equal the expectations of the potential outcomes in

the second panel of Table 1. The sample means would be based on hetero-

geneous groups of individuals who differ systematically within the strata

defined by S in ways that are correlated with individual-level treatment

effects.

Table 2

Estimated Conditional Expectations and Probabilities From

a Very Large Sample for Hypothetical Example 1

Estimated Mean of the Observed

Outcome Conditional on S and D

Control Group Treatment Group

Si = 1 EN ½YijSi = 1;Di = 0�= 2 EN ½YijSi = 1;Di = 1�= 4

Si = 2 EN ½YijSi = 2;Di = 0�= 6 EN ½YijSi = 2;Di = 1�= 8

Si = 3 EN ½YijSi = 3;Di = 0�= 10 EN ½YijSi = 3;Di = 1�= 14

Estimated Probability of S Conditional on D

Si = 1 PrN ½Si = 1jDi = 0�= :6 PrN ½Si = 1jDi = 1�= :2

Si = 2 PrN ½Si = 2jDi = 0�= :2 PrN ½Si = 2jDi = 1�= :3

Si = 3 PrN ½Si = 3jDi = 0�= :2 PrN ½Si = 3jDi = 1�= :5
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If S offers a perfect stratification of the data, then, with a suitably large

sample, one can estimate from the numbers in the cells of the two panels

of Table 2 both the average treatment effect among the treated as

ð4− 2Þð:2Þ+ ð8− 6Þð:3Þ+ ð14− 10Þð:5Þ= 3 and the average treatment

effect among the untreated as (4− 2Þð:6Þ+ ð8− 6Þð:2Þ+ ð14− 10Þ
ð:2Þ= 2:4. Finally, if one calculates the appropriate marginal distributions

of S and D (using sample analogs for the marginal distribution from the

first panel of Table 1), one can perfectly estimate the unconditional aver-

age treatment effect either as ð4− 2Þð:44Þ+ ð8− 6Þð:24Þ+ ð14− 10Þ
ð:32Þ= 2:64 or as 3ð:6Þ+ 2:4ð:4Þ= 2:64. Thus, for this hypothetical exam-

ple, the naive estimator would be asymptotically upwardly biased for the

average treatment effect among the treated, the average treatment effect

among the untreated, and the unconditional average treatment effect. But,

by appropriately weighting stratified estimates of the treatment effect,

unbiased and consistent estimates of the average treatment effects in equa-

tions (3), (4), and (5) can be obtained.

In general, if a stratifying variable S completely accounts for all sys-

tematic differences between those who take the treatment and those who

do not, then conditional-on-S estimators yield consistent estimates of the

average treatment effect conditional on S:

fEN ½YijDi = 1; Si = s�−EN ½YijDi = 0; Si = s�g

−→p E½Y1
i − Y0

i jSi = s�=E½δijSi = s�:

One can then take weighted sums of these stratified estimators, such as

for the unconditional average treatment effect:X
S

fEN ½YijDi = 1; Si = s�−EN ½YijDi = 0; Si = s�g Pr N ½Si = s�−→p E½δi�:

Substituting into this last expression the distributions of S conditional

on the two possible values of D, one can obtain consistent estimates of the

average treatment effect among the treated and the average treatment

effect among the untreated.

The key to using stratification to solve the causal inference problem for

all three causal effects of primary interest is twofold: finding the stratify-

ing variable and then obtaining the marginal probability distribution PrðSÞ
as well as the conditional probability distribution PrðSjDÞ. Once these

steps are accomplished, obtaining consistent estimates of the within-strata

treatment effects is straightforward, and one simply forms the appropriate

weighted average of the stratified estimates.
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This simple example shows all of the basic principles of matching esti-

mators. Treatment and control subjects are matched together in the sense

that they are grouped together into strata. Then, an average difference

between the outcomes of treatment and control subjects is estimated,

based on a weighting of the strata (and thus the individuals within them)

by a common distribution—that is, the marginal distribution PrðSÞ, the

conditional distribution PrðSjD= 1Þ, the opposite conditional distribution

PrðSjD= 0Þ; or any other theoretically meaningful distribution of S. The

imposition of the same set of stratum-level weights for those in both the

treatment and control groups ensures that the data are balanced with

respect to the distribution of S across treatment and control cases.

Overlap Conditions for Stratifying Variables

Suppose now that a perfect stratification of the data is available but that

there is a stratum in which no member of the population ever receives the

treatment. Here, the average treatment effect is undefined. A hidden stipu-

lation is built into Assumptions 1-S and 2-S if one wishes to be able to

estimate the average treatment effect for the entire population. The ‘‘per-

fect’’ stratifying variables must not be so perfect that they sort determinis-

tically individuals into either the treatment and control. If so, the range of

the stratifying variables will differ fundamentally for treatment and con-

trol cases, necessitating a redefinition of the causal effect of interest.

Hypothetical Example 2

For the example depicted in Tables 3 and 4, S again offers a perfect

stratification of the data. The setup of these two tables is exactly equiva-

lent to the prior Tables 1 and 2. The major difference is evident in the joint

distribution of S and D presented in the first panel of Table 3. As shown

in the first cell of the second column, no individual with S equal to 1

would ever be observed in the treatment group of a data set of any size, as

the joint probability of S equal to 1 and D equal to 1 is zero. Correspond-

ing to this structural zero in the joint distribution of S and D, the second

panel of Table 3 shows that there is no corresponding conditional expecta-

tion of the potential outcome under the treatment state for those with S

equal to 1. And thus, as shown in the last column of the second panel of

Table 3, no causal effect exists for individuals with S equal to 1.13

Adopting the college degree causal effect framing of the last hypotheti-

cal example, this hypothetical example asserts that there is a subpopulation
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of individuals from such disadvantaged backgrounds that no individuals

with S= 1 have ever graduated from college. For this group of indivi-

duals, we assume in this example that there is simply no justification for

using the wages of those from more advantaged social backgrounds to

extrapolate to the ‘‘what-if’’ wages of the most disadvantaged individuals

if they had somehow overcome the obstacles that prevent them from

obtaining college degrees.

Table 4 shows what can be estimated from a very large sample for this

example. If S offers a perfect stratification of the data, one could consis-

tently estimate the treatment effect for the treated as ð8− 6Þð:325Þ+
ð14− 10Þð:675Þ= 3:35. There is, unfortunately, no way to consistently

estimate the treatment effect for the untreated and hence no way to consis-

tently estimate the unconditional average treatment effect.

Are examples such as this one ever found in practice? For an example

that is more realistic than the causal effect of a college degree on eco-

nomic success, consider the evaluation of a generic program in which

there is an eligibility rule. One simply cannot estimate the likely benefits

of enrolling in the program for those who are ineligible, even though, if

some of those individuals were enrolled in the program, they would likely

Table 3

The Joint Probability Distribution and Conditional Population

Expectations for Hypothetical Example 2

Joint Probability Distribution of S and D

D= 0 D= 1

S= 1 Pr½S= 1;D= 0�= :4 Pr½S= 1;D= 1�= 0 Pr½S= 1�= :4

S= 2 Pr½S= 2;D= 0�= :1 Pr½S= 2;D= 1�= :13 Pr½S= 2�= :23

S= 3 Pr½S= 3;D= 0�= :1 Pr½S= 3;D= 1�= :27 Pr½S= 3�= :37

Pr½D= 0�= :6 Pr½D= 1�= :4

Potential Outcomes

Under the Control State Under the Treatment State

S= 1 E½Y0jS= 1�= 2

S= 2 E½Y0jS= 2�= 6 E½Y1jS= 2�= 8 E½Y1 � Y0jS= 2�= 2

S= 3 E½Y0jS= 3�= 10 E½Y1jS= 3�= 14 E½Y1 � Y0jS= 2�= 4

E½Y0jD= 0�
= :4

:6 ð2Þ+ :1
:6 ð6Þ+ :1

:6 ð10Þ
= 4

E½Y1jD= 1�
= :13

:4 ð8Þ+ :27
:4 ð14Þ

= 12:05
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be affected by the treatment in some way (but, of course, in a way that

may be very different from those who do enroll in the program).

Perhaps the most important point of this last example, however, is that

the naive estimator is entirely misguided for this hypothetical application.

The average treatment effect is undefined for the population of interest.

More generally, not all causal questions have answers worth seeking even

in best-case data availability scenarios, and sometimes this will be clear

from the data and contextual knowledge of the application. However, at

other times, the data may appear to suggest that no causal inference is pos-

sible for some group of individuals even though the problem is simply a

small sample size. There is a clever solution to sparseness of data for these

types of situations, which we discuss in the next section.

Matching as Weighting

As shown in the last section, if all of the variables in S have been observed

such that a perfect stratification of the data would be possible with a suitably

large random sample from the population, then a consistent estimator is

available in theory for each of the average causal effects of interest defined

in equations (3) through (5). However, in many (if not most) data sets of

finite size, it may not be possible to use the simple estimation methods of

the last section to generate consistent estimates. Treatment and control cases

Table 4

Estimated Conditional Expectations and Probabilities From a Very

Large Sample for Hypothetical Example 2

Estimated Mean of the Observed

Outcome Conditional on S and D

Control Group Treatment Group

Si = 1 EN ½YijSi = 1;Di = 0�= 2

Si = 2 EN ½YijSi = 2;Di = 0�= 6 EN ½YijSi = 2;Di = 1�= 8

Si = 3 EN ½YijSi = 3;Di = 0�= 10 EN ½YijSi = 3;Di = 1�= 14

Estimated Probability of S Conditional on D

Si = 1 PrN ½Si = 1jDi = 0�= :667 PrN ½Si = 1jDi = 1�= 0

Si = 2 PrN ½Si = 2jDi = 0�= :167 PrN ½Si = 2jDi = 1�= :325

Si = 3 PrN ½Si = 3jDi = 0�= :167 PrN ½Si = 3jDi = 1�= :675
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may be missing at random within some of the strata defined by S, such that

some strata contain only treatment or only control cases. In this scenario,

some within-stratum causal effect estimates cannot be calculated. In this

section, we introduce a related set of weighting estimators that rely on esti-

mated propensity scores to solve the sort of data sparseness problems that

afflict samples of finite size.

The Utility of Known Propensity Scores

An estimated propensity score is the estimated probability of taking the

treatment as a function of variables that predict treatment assignment.

Before explaining the attraction of estimated propensity scores, there is

value in understanding why known propensity scores would be useful in

an idealized context such as a perfect stratification of the data.

Within a perfect stratification, the true propensity score is nothing other

than the within-stratum probability of receiving the treatment, or Pr½D= 1jS�:
For hypothetical Example 1, the propensity scores are as follows:

Pr½D= 1jS= 1�= :08

:44
= :182,

Pr½D= 1jS= 2�= :12

:24
= :5, and

Pr½D= 1jS= 3�= :2

:32
= :625.

Why is the propensity score useful? As shown earlier for hypothetical

Example 1, if a perfect stratification of the data is available, then the final

ingredient for calculating average treatment effect estimates for the treated

and for the untreated is the conditional distribution Pr½SjD�. One can

recover Pr½SjD� from the propensity scores by applying Bayes’s rule using

the marginal distributions of D and S. For example, for the first stratum in

Example 1,

Pr½S= 1jD= 1�= Pr½D= 1jS= 1� Pr½S= 1�
Pr½D= 1� = ð:182Þð:44Þ

ð:4Þ = :2.

Thus, the true propensity scores encode all of the necessary informa-

tion about the joint dependence of S and D that is needed to estimate and

then combine conditional-on-S treatment effect estimates into estimates

of the treatment effect for the treated and the treatment effect for the

untreated. Known propensity scores are thus useful for unpacking the
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inherent heterogeneity of causal effects and then averaging over such het-

erogeneity to calculate average treatment effects.

Of course, known propensity scores are almost never available to

researchers working with observational rather than experimental data.

Thus, the literature on matching more often recognizes the utility of pro-

pensity scores for addressing an entirely different concern: solving com-

parison problems created by the sparseness of data in any finite sample.

These methods rely on estimated propensity scores, as we discuss next.

Weighting With Propensity Scores to Address Sparseness

Suppose again that a perfect stratification of the data exists and is

known. In particular, Assumptions 1-S and 2-S are valid for a set of vari-

ables in S, which are measured without error. Further suppose that the true

propensity score is greater than 0 and less than 1 for every possible combi-

nation of values on the variables in S. But suppose now that (1) there are

multiple variables in S, and (2) some of these variables take on many

values. In this scenario, there may be many strata in the available data in

which no treatment or control cases are observed, even though the true

propensity score is between 0 and 1 for every stratum in the population.

Can average treatment effects be consistently estimated in this sce-

nario? Rosenbaum and Rubin (1983a) answer this question affirmatively.

The essential points of their argument are the following (and see the origi-

nal article for a formal proof). First, the sparseness that results from the

finiteness of a sample is random, conditional on the joint distribution of

S and D. As a result, within each stratum for a perfect stratification of the

data, the probability of having a zero cell in the treatment or the control

state is solely a function of the propensity score. Because such sparseness

is conditionally random, strata with identical propensity scores (i.e.,

different combinations of values for the variables in S but the same

within-stratum probability of treatment) can be combined into a more

coarse stratification. Over repeated samples from the same population,

zero cells would emerge with equal frequency across all strata within

these coarse propensity score–defined strata.

Because sparseness emerges in this predictable fashion, stratifying on

the propensity score itself (rather than more finely on all values of the vari-

ables in S) solves the sparseness problem because the propensity score can

be treated as a single perfectly stratifying variable. In fact, as we show in

the next hypothetical example, one can obtain consistent estimates of treat-

ment effects by weighting the individual-level data by an appropriately
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chosen function of the propensity score, without ever having to compute

any stratum-specific causal effect estimates.

But how does one obtain the propensity scores for data from a random

sample of the population of interest? Rosenbaum and Rubin (1983a) argue

that if one has observed the variables in S, then the propensity score can

be estimated using standard methods, such as logit modeling. That is, one

can estimate the propensity score, assuming a logistic distribution:

Pr½Di = 1jSi�= expðSiφÞ
1+ expðSiφÞ

ð17Þ

and invoke maximum likelihood to estimate the vector of coefficients φ.

One can then stratify on the index of the estimated propensity score,

eðSiÞ= Siφ̂, or appropriately weight the data, as we show in the next

example, and all of the results established for known propensity scores

then obtain.14 Consider the following hypothetical example, where

weighting is performed only with respect to the estimated propensity

score, resulting in unbiased and consistent estimates of average treatment

effects even though sparseness problems are severe.

Hypothetical Example 3

Consider the following Monte Carlo simulation, which is an expanded

version of hypothetical Example 1 in two respects. First, for this example,

there are two stratifying variables, A and B, each of which has 100 sepa-

rate values. As for Example 1, these two variables represent a perfect stra-

tification of the data and, as such, represent all of the variables in the

vector of perfect stratifying variables, defined earlier as S. Second, to

demonstrate the properties of alternative estimators, this example uses

50; 000 samples of data, each of which is a random realization of the same

set of definitions for the constructed variables and the stipulated joint dis-

tribution between them.

Generation of the 50,000 data sets. For the simulation, we gave the

variables A and B values of :01, :02, :03, and upward to 1. We then cross-

classified the two variables to form a 100-by-100 grid and stipulated a

propensity score, as displayed in Figure 1, that is a positive, nonlinear

function of both A and B.15 We then populated the resulting 20,000 con-

structed cells (100 by 100 for the A-by-B grid multiplied by the two values

of D) using a Poisson random-number generator with the relevant propen-

sity score as the Poisson parameter for the 10,000 cells for the treatment

group and one minus the propensity score as the Poisson parameter for the
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10,000 cells for the control group. This sampling scheme generates (on

average across simulated data sets) the equivalent of 10,000 sample mem-

bers, assigned to the treatment instead of the control as a function of the

probabilities plotted in Figure 1.16

Across the 50,000 simulated data sets, on average, 7,728 of the

10,000 possible combinations of values for both A and B had no indivi-

duals assigned to the treatment, and 4,813 had no individuals assigned to

the control. No matter the actual realized pattern of sparseness for each

simulated data set, all of the 50,000 data sets are afflicted, such that a

perfect stratification on all values for the variables A and B would result

in many strata within each data set for which only treatment or control

cases are present.
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Figure 1

The True Propensity Score for Hypothetical Example 3

as a Function of A and B
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To define treatment effects for each data set, two potential outcomes

were defined as linear functions of individual values for Ai and Bi:

Y1
i = 102+ 6Ai + 4Bi + ε1

i ;

Y0
i = 100+ 3Ai + 2Bi + ε0

i ;

where both ε1
i and ε0

i are independent random draws from a normal distri-

bution with expectation 0 and standard deviation of 5.17 Then, as in equa-

tion (observed outcome definition), individuals from the treatment group

were given an observed Yi equal to their simulated Y1
i , and individuals from

the control group were given an observed Yi equal to their simulated Y0
i .

With this setup, the simulation makes available 50,000 data sets where

the individual treatment effects can be calculated exactly since true values

of Y1
i and Y0

i are available for all simulated individuals. Because the true

average treatment effect, treatment effect for the treated, and treatment

effect for the untreated are thus known for each simulated data set, these

average effects can then serve as baselines against which alternative esti-

mators that use data only on Yi, Di, Ai, and Bi can be compared.

The first row of Table 5 presents true Monte Carlo means and standard

deviations of the three average treatments effects, calculated across the

50; 000 simulated data sets. The mean of the average treatment effect

across data sets is 4:525, whereas the means of the average treatment

effects for the treated and for the untreated are 4:892 and 4:395, respec-

tively. Similar to hypothetical Example 1, this example represents a form

of positive selection, where those who are most likely to be in the treat-

ment group are also those most likely to benefit from the treatment.

Accordingly, the treatment effect for the treated is larger than the treat-

ment effect for the untreated.

Methods for treatment effect estimation. Rows 2 through 5 of Table 5

report means and standard deviations across the 50,000 data sets of three

sets of regression estimates of the causal effect of D on Y . The first set is

drawn from 50; 000 separate regressions of Yi on Di, resulting in para-

meter estimates exactly equivalent to what were defined in equation (6) as

naive estimates (because, again, they do not use any information about the

treatment assignment mechanism). The second and third sets of regression

estimates incorporate least squares adjustments for A and B under two dif-

ferent specifications, linear and quadratic.

The last three rows of Table 5 present analogous results for three

propensity score–based weighting estimators. For the estimates in the fifth
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row, it is (wrongly) assumed that the propensity score can be estimated

consistently using a logit model with linear terms for A and B—that is,

assuming that, for equation (17), a logit with Siφ, specified as α+
φAAi +φBBi, will yield consistent estimates of the propensity score sur-

face plotted in Figure 1. After the logit model was estimated for each of

the 50,000 data sets using the wrong specification, the estimated propen-

sity score for each individual was then calculated:

p̂i = expðα̂+ φ̂AAi + φ̂BBiÞ
1+ expðα̂+ φ̂AAi + φ̂BBiÞ

ð18Þ

along with the estimated odds of the propensity of being assigned to the

treatment:

r̂i = p̂i

1− p̂i

; ð19Þ

where p̂i is as constructed in equation (18).

Table 5

Monte Carlo Means and Standard Deviations of Treatment Effects

and Treatment Effect Estimates for Hypothetical Example 3

Average

Treatment

Effect

Average

Treatment

Effect for

the Treated

Average

Treatment

Effect for

the Untreated

True treatment effects 4.525 4.892 4.395

(.071) (.139) (.083)

Ordinary least squares regression estimators

Regression of Y on D 5.388

(i.e., the naive estimator) (.121)

Regression of Y on D;A, and B 4.753

(.117)

Regression of Y on D;A;A2;B, and B2 4.739

(.118)

Propensity score–based weighting estimators

Misspecified propensity score estimates 4.456 4.913 4.293

(.122) (.119) (.128)

Perfectly specified propensity score estimates 4.526 4.892 4.396

(.120) (.127) (.125)

True propensity scores 4.527 4.892 4.396

(.127) (.127) (.132)
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To estimate the treatment effect for the treated, we then implemented a

weighting estimator by calculating the average outcome for the treated

and subtracting from this average outcome a counterfactual average out-

come using weighted data on those from the control group:

δ̂TT ;weight ≡ 1

n1

X
i:Di = 1

Yi

( )
−

P
i:Di = 0

r̂iYiP
i:Di = 0

r̂i

8><
>:

9>=
>;; ð20Þ

where n1 is the number of individuals in the treatment group, and r̂i is the

estimated odds of being in the treatment group instead of the control

group, as constructed in equations (18) and (19). The weighting operation

in the second term gives more weight to control group individuals equiva-

lent to those in the treatment group (see Rosenbaum 1987, 2002). As we

will describe later when discussing the connections between matching and

regression, the weighting estimator in equation (20) can be written as a

weighted ordinary least squares estimator.

To estimate the treatment effect for the untreated, we then implemented a

weighting estimator that is the mirror image of the one in equation (20):

δ̂TUT ;weight ≡
P

i:Di = 1

Yi=r̂iP
i:Di = 1

n1=r̂i

8><
>:

9>=
>;− 1

n0

X
i:Di = 0

Yi

( )
; ð21Þ

where n0 is the number of individuals in the control group. Finally, the cor-

responding estimator of the unconditional average treatment effect is

δ̂ATE;weight ≡ 1

n

X
i

Di

( )
δ̂TT ;weight
� �+ 1− 1

n

X
i

Di

" #( )
δ̂TUT ;weight
� �

; ð22Þ

where δ̂TT ;weight and δ̂TUT ;weight are as defined in equations (20) and (21),

respectively. Accordingly, an average treatment effect estimate is simply

a weighted average of the two conditional average treatment effect

estimates.

The same basic weighting scheme is implemented for the sixth row of

Table 5, but the estimated propensity score used to define the estimated

odds of treatment, r̂i, is instead based on results from a flawlessly estimated

propensity score equation (i.e., one that uses the same specification that was

fed to the random generator that assigned individuals to the treatment; see

note 17 for the specification). Finally, for the last row of Table 5, the same

weighting scheme is implemented, but in this case, the estimated odds of

Morgan, Harding / Estimators of Causal Effects 27



treatment, r̂i, are replaced by the true odds of treatment, ri, as calculated

with reference to the exact function that generated the propensity score for

Figure 1.

Monte Carlo results. As reported in the second through fourth rows of

Table 5, all three regression-based estimators yield biased estimates of the

average treatment effect (which are, on average, too large).18 As reported

in the fifth row of Table 5, the weighting estimator based on the misspeci-

fied logit yields estimates that are closer on average than the regression-

based estimators for the average treatment effect. This difference is

somewhat artificial since, in general, such a difference would depend on

the relative misspecification of the propensity score estimating equation,

the specification of the alternative regression equation, and the distribu-

tions of the potential outcomes.

The sixth row of Table 5 presents analogous estimates with flawlessly

estimated propensity scores. These estimates are asymptotically unbiased

and consistent for the average treatment effect, the treatment effect for the

treated, and the treatment effect for the untreated. Finally, for the last row,

the weighting estimates use the true propensity scores and are also asymp-

totically unbiased and consistent (but, as shown by Rosenbaum 1987,

more variable than those based on the flawlessly estimated propensity

score; see also Hahn 1998; Hirano, Imbens, and Ridder 2003; Rosenbaum

2002). The last two lines are thus the most important to note, as they

demonstrate the most important claim of the literature: If one can obtain

unbiased and consistent estimates of the true propensity scores, one can

solve entirely the problems created by sparseness of data.

This example shows the potential power of propensity score–based

modeling. If treatment assignment can be modeled perfectly, one can

solve the sparseness problems that afflict finite data sets, at least insofar

as offering estimates that are unbiased and consistent. On the other hand,

this simulation also develops an important qualification of this potential

power. Without a perfect specification of the propensity score estimating

equation, one cannot rest assured that unbiased and consistent estimates

can be obtained. Since propensity scores achieve their success by

‘‘undoing’’ the treatment assignment patterns, analogously to weighting a

stratified sample, systematically incorrect estimated propensity scores can

generate systematically incorrect weighting schemes that yield biased and

inconsistent estimates of treatment effects. There is also the larger issue of

whether the challenges of causal inference can be reduced to mere con-

cerns about conditionally random sparseness, and this will depend entirely
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on whether one is justified in imposing assumptions on the potential out-

comes and treatment assignment process, as outlined earlier.

Given the description of matching estimators offered in the introduction

(i.e., algorithms for mechanically identifying matched sets of equivalent treat-

ment and control cases), in what sense are the individual-level weighting esti-

mators of hypothetical Example 3 equivalent to matching estimators?

As emphasized earlier for hypothetical Examples 1 and 2, stratification

estimators have a straightforward connection to matching. The strata that

are formed represent matched sets, and a weighting procedure is then used

to average stratified treatment effect estimates to obtain the average treat-

ment effects of interest. The propensity score weighting estimators, how-

ever, have a less straightforward connection. Here, the data are, in effect,

stratified coarsely by the estimation of the propensity score (i.e., since all

individuals in the same strata, as defined by the stratifying variables in S,

are given the same estimated propensity scores), and then the weighting is

performed directly across individuals instead of across the strata. This type

of individual-level weighting is made necessary because of sparseness

(since some of the fine strata for which propensity scores are estimated

necessarily contain only treatment or control cases, thereby preventing the

direct calculation of stratified treatment effect estimates). Nonetheless, the

same principle of balancing holds: Individuals are weighted within defined

strata to ensure that the distribution of S is the same within the treatment

and control cases that are then used to estimate the treatment effects.

In the opposite direction, it is important to recognize that the algorithmic

matching estimators that we summarize in the next section can be consid-

ered weighting estimators. As we show later, these data analysis procedures

warrant causal inference by achieving an ‘‘as if’’ stratification of the data

that results in a balanced distribution of covariates across matched treatment

and control cases. Thus, although it is sometimes easier to represent match-

ing estimators as algorithmic data analysis procedures that mechanically

match seemingly equivalent cases to each other, it is best to understand

matching as a method to weight the data in order to warrant causal inference

by balancing S across the treatment and control cases.

Matching as Data Analysis Algorithms

Algorithmic matching estimators differ primarily in (1) the number of

matched cases designated for each to-be-matched target case and (2) how

multiple matched cases are weighted if more than one is used for each
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target case. In this section, we describe the four main types of matching

estimators.

Heckman, Ichimura, and Todd (1997, 1998) and Smith and Todd

(2005) outline a general framework for representing alternative matching

estimators, and we follow their lead. Using our notation, all matching

estimators of the treatment effect for the treated would be defined in this

framework as

δ̂TT ;match = 1

n1

X
i

ðYijDi = 1Þ−
X
j

ωi;jðYjjDj = 0Þ
( )

; ð23Þ

where n1 is the number of treatment cases, i is the index over treatment

cases, j is the index over control cases, and ωi;j represents a set of scaled

weights that measure the distance between each control case and the target

treatment case. In equation (23), the weights are entirely unspecified.

Alternative matching estimators of the treatment effect for the treated

can be represented as different procedures for deriving the weights repre-

sented by ωi;j. As we will describe next, the weights can take on many

values—indeed, as many n1-by-n0 different values—since alternative

weights can be used when constructing the counterfactual value for each

target treatment case. The difference in the propensity score is the most

common distance measure used to construct weights. Other measures of

distance are available, including the estimated odds of the propensity

score, the difference in the index of the estimated logit, and the Mahalano-

bis metric.19

Before describing the four main types of matching algorithms, we note

two important points. First, for simplicity of presentation, in this section,

we focus on matching estimators of the treatment effect for the treated.

Each of the following matching algorithms could be used in reverse,

instead focusing on matching treatment cases to control cases to construct

an estimate of the treatment effect for the untreated. We mention this, in

part, because it is sometimes implied in the applied literature that the

matching techniques that we are about to summarize are only useful for

estimating the treatment effect for the treated. This is false. If (1) all vari-

ables in S are known and observed, such that a perfect stratification of the

data could be formed with a suitably large data set because both Assump-

tions 1-S and 2-S in equations (13) and (14) are valid, and (2) the ranges

of all variables in S are the same for both treatment and control cases, then

simple variants of the matching estimators that we present in this section

can be formed that are consistent for the treatment effect among the
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treated, the treatment effect among the untreated, and the average treat-

ment effect.

Moreover, to consistently estimate the treatment effect for the treated,

one does not need to assume full ignorability of treatment assignment or

that both Assumptions 1-S and 2-S in equations (13) and (14) are valid.

Instead, only Assumption 2-S (i.e., E½Y0
i jDi = 1; Si�=E½Y0

i jDi = 0; Si�Þ
must hold.20 In other words, to estimate the average treatment effect

among the treated, it is sufficient to assume that, conditional on S, the

average level of the outcome under the control for those in the treatment is

equal, on average, to the average level of the outcome under the control

for those in the control group.21 This assumption is still rather stringent, as

it asserts that those in the control group do not disproportionately gain

from the control more than would those in the treatment group if they were

instead in the control group. But it is surely weaker than having to assert

Assumptions 1-S and 2-S together (which is again weaker than having to

assert an assumption of strong ignorability of treatment assignment).

Second, as we show in a later section, the matching algorithms we sum-

marize next are data analysis procedures that can be used more generally

even when some of the variables in S are unobserved. The matching esti-

mators may still be useful, as argued by Rosenbaum (2002), as a set of

techniques that generate a provisional set of causal effect estimates that

can then be subjected to further analysis. We discuss what sorts of further

analysis have been proposed in the section that follows.

Basic Variants of Matching Algorithms

Exact Matching

For the treatment effect for the treated, exact matching constructs the

counterfactual for each treatment case using the control cases with identi-

cal values on the variables in S. In the notation of equation (23), exact

matching uses weights equal to 1=k for matched control cases, where k is

the number of matches selected for each target treatment case. Weights of

0 are given to all unmatched control cases. If only one match is chosen

randomly from among possible exact matches, then ωi;j is set to 1 for the

randomly selected match (from all available exact matches) and 0 for all

other control cases. Exact matching may be combined with any of the

matching methods described below.
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Nearest Neighbor Matching

For the treatment effect for the treated, nearest neighbor matching con-

structs the counterfactual for each treatment case using the control cases

that are closest to the treatment case on a unidimensional measure con-

structed from the variables in S, usually an estimated propensity score but

sometimes variants of propensity scores (see Althauser and Rubin 1970;

Rubin 1973a, 1973b, 1976a, 1976b, 1980; Rosenbaum and Rubin 1983a,

1985a, 1985b). The traditional algorithm randomly orders the treatment

cases and then selects for each treatment case the control case with the

smallest distance. The algorithm can be run with or without replacement.

With replacement, a control case is returned to the pool after a match and

can be matched later to another treatment case. Without replacement, a

control case is taken out of the pool once it is matched.22

If only one nearest neighbor is selected for each treatment case, then

ωi;j is set equal to 1 for the matched control case and 0 for all other control

cases. One can also match multiple nearest neighbors to each target treat-

ment case, in which case ωi;j is set equal to 1=ki for the matched nearest

neighbors, where ki is the number of matches selected for each target

treatment case i. Matching more control cases to each treatment case

results in lower expected variance of the treatment effect estimate but also

raises the possibility of greater bias since the probability of making more

poor matches increases.

A danger with nearest neighbor matching is that it may result in some

very poor matches for treatment cases. A version of nearest neighbor

matching, know as caliper matching, is designed to remedy this drawback

by restricting matches to some maximum distance. With this type of

matching, some treatment cases may not receive matches, and thus the

effect estimate will apply only to the subset of the treatment cases

matched (even if ignorability holds and there is simply sparseness in the

data).23

Interval Matching

Interval matching (also referred to as subclassification and stratification

matching) sorts the treatment and control cases into segments of a unidi-

mensional metric, usually the estimated propensity score, and then calcu-

lates the treatment effect within these intervals (see Cochran 1968;

Rosenbaum and Rubin 1983a, 1984; Rubin 1977). For each interval, a var-

iant of the matching estimator in equation (23) is estimated separately,
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with ωi;j chosen to give the same amount of weight to the treatment cases

and control cases within each interval. The average treatment effect for

the treated is then calculated as the mean of the interval-specific treatment

effects, weighted by the number of treatment cases in each interval. This

method is nearly indistinguishable from nearest neighbor caliper matching

with replacement when each of the intervals includes exactly one treat-

ment case.

Kernel Matching

Developed by Heckman et al. (Heckman, Ichimura, and Todd 1997,

1998; Heckman, Ichimura, Smith, and Todd 1998), kernel matching con-

structs the counterfactual for each treatment case, using all control cases,

but weights each control case based on its distance from the treatment

case. The weights represented by ωi;j in equation (23) are calculated using

a kernel function, Gð:Þ, that transforms the distance between the selected

target treatment case and all control cases in the study. When using the

estimated propensity score to measure the distance, kernel-matching esti-

mators define the weight as

ωij =
GðPðSjÞ−PðSiÞ

an
ÞP

j Gð
PðSjÞ−PðSiÞ

an
Þ
; ð24Þ

where an is a bandwidth parameter that scales the difference in the esti-

mated propensity scores based on the sample size, and Pð:Þ is the esti-

mated propensity score as a function of its argument.24 The numerator of

this expression yields a transformed distance between each control case

and the target treatment case. The denominator is a scaling factor equal

to the sum of all the transformed distances across control cases, which is

needed so that the sum of ωi;j is equal to 1 across all control cases when

matched to each target treatment case.

Although kernel-matching estimators appear quite complex, they are a

natural extension of interval and nearest neighbor matching: All control

cases are matched to each treatment case but weighted so that those clo-

sest to the treatment case are given the greatest weight. Smith and Todd

(2005) offer an excellent intuitive discussion of kernel matching along

with generalizations to local linear matching (Heckman, Ichimura, and

Todd 1997, 1998; Heckman, Ichimura, Smith, and Todd 1998) and local

quadratic matching (Ham, Li, and Reagan 2003).
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Which of These Basic Matching Algorithms Works Best?

There is very little specific guidance in the literature on which of these

matching algorithms works best, and the answer very likely depends on

the substantive application. Smith and Todd (2005) and Heckman et al.

(Heckman, Ichimura, and Todd 1997, 1998; Heckman, Ichimura, Smith,

and Todd 1998) have experimental data against which matching estima-

tors can be compared, and they argue for the advantages of kernel match-

ing (and a particular form of robust kernel matching). To the extent that a

general answer to this question can be offered, we would suggest that

nearest neighbor caliper matching with replacement, interval matching,

and kernel matching are all closely related and should be preferred to

nearest neighbor matching without replacement. If the point of a matching

estimator is to minimize bias by comparing target cases to similar matched

cases, then methods that make it impossible to generate poor matches

should be preferred.25 It is also sometimes advisable to combine matching

with regression adjustment if there is a question as to whether balance has

been achieved (see Rubin and Thomas 2000). Matching on both the pro-

pensity score and the Mahalanobis metric has also been recommended for

achieving balance on higher order moments (see Rosenbaum and Rubin

1985a, 1985b; Diamond and Sekhon 2005).26

Since there is no clear guidance on which of these matching estimators

is ‘‘best,’’ we constructed a fourth hypothetical example to give a sense of

how often alternative matching estimators yield appreciably similar esti-

mates. We also develop this example so that it can serve as a bridge to the

section that follows, where the substantial additional challenges of real-

world applications are discussed.

Hypothetical Example 4

For this example, we use simulated data, where we defined the poten-

tial outcomes and treatment assignment patterns so that we can explore

the relative performance of alternative matching and regression estima-

tors. The former are estimated under alternative scenarios with two differ-

ent specifications of the propensity score estimating equation. Unlike

hypothetical Example 3, we do not repeat the simulation for multiple sam-

ples but confine ourselves to results on a single sample, as would be typi-

cal of any real-world application.
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Generation of the data set. The data set that we constructed mimics the

data set from the National Education Longitudinal Study analyzed by

Morgan (2001). For that application, Morgan used regression and match-

ing estimators to estimate the effect of Catholic schooling on the achieve-

ment of high school students in the United States. For our simulation, we

generated a data set of 10,000 individuals with values for 13 baseline vari-

ables that resemble closely the joint distribution of the similar variables in

Morgan. The variables include dummies for race, region, urbanicity, have

own bedroom, and have two parents, along with an ordinal variable for

number of siblings and a continuous variable for socioeconomic status.

Then, we created an entirely hypothetical cognitive skill variable, assumed

to reflect innate and acquired skills in unknown proportions.27

We then defined potential outcomes for all 10; 000 individuals, assum-

ing that the observed outcome of interest is a standardized test taken at the

end of high school. For the potential outcome under the control (i.e., a

public school education), we generated ‘‘what-if’’ test scores form a nor-

mal distribution, with an expectation as a function of race, region, urbani-

city, number of siblings, socioeconomic status, family structure, and

cognitive skills. We then assumed that the ‘‘what-if’’ test scores under the

treatment (i.e., a Catholic school education) would be equal to the out-

come under the control plus a boosted outcome under the treatment that is

function of race, region, and cognitive skills (under the assumption, based

on the dominant position in the extant literature, that black and Hispanic

respondents from the north, as well as all of those with high cognitive

skills, are disproportionately likely to benefit from Catholic schooling).

We then defined the probability of attending a Catholic school using a

logit with 26 parameters, based on a specification from Morgan (2001)

along with an assumed self-selection dynamic where individuals are

slightly more likely to select the treatment as a function of the relative size

of their individual-level treatment effect.28 This last component of the

logit creates a nearly insurmountable challenge since in any particular

application, one would not have such a variable with which to estimate a

propensity score. That, however, is our point in including this term, as

individuals are thought, in many real-world applications, to be selecting

from among alternative treatments based on accurate expectations, una-

vailable as measures to researchers, of their likely gains from alternative

treatment regimes. The probabilities defined by the logit were then passed

to a binomial distribution, which resulted in 986 of the 10; 000 simulated

students attending Catholic schools. Finally, observed outcomes were

assigned according to treatment status.
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With the sample divided into the treatment group and the control

group, we calculated from the prespecified potential outcomes the true

baseline average treatment effects. The treatment effect for the treated is

6:96 in the simulated data, while the treatment effect for the untreated is

5:9. In combination, the average treatment effect is then 6:0.

Methods for treatment effect estimation. In Table 6, we offer 12 sepa-

rate types of matching estimates, as well as an additional 5 that incorpo-

rate supplemental regression adjustment. These are based on routines

written for STATA by three sets of authors: Abadie et al. (2001), Becker

and Ichino (2002), and Leuven and Sianesi (2003).29 We estimate all

matching estimators under two basic scenarios. First, we offer a set of esti-

mates based on poorly estimated propensity scores, derived from an esti-

mating equation from which we omitted nine interaction terms along with

the cognitive skill variable. The last specification error is particularly

important, as the cognitive skill variable has a correlation of 0:401 with

the outcome and 0:110 with the treatment in the simulated data. For the

second scenario, we included the cognitive skill variable and the nine

interaction terms. Both scenarios lack an adjustment for the self-selection

dynamic, in which individuals select into the treatment partly as a function

of their expected treatment effect.

Regarding the specific settings for the alternative matching estimators,

which are listed in the row headings of Table 6, the interval matching

algorithm began with five blocks and subdivided blocks until each block

achieved balance on the estimated propensity score across treatment and

control cases. Nearest neighbor matching with replacement was imple-

mented with and without a caliper of 0:001, in both one and five nearest

neighbor variants. Radius matching was implemented using a radius of

0:001. For the kernel-matching estimators, we used two types of kernels—

Epanechnikov and Gaussian—and the default bandwidth of 0:06 for both

pieces of software. For the local linear matching estimator, we used the

Epanechnikov kernel with the default bandwidth of 0:08.

For comparison, we offer OLS regression estimates of the treatment

effect under two analogous scenarios (i.e., including the same variables

for the propensity score estimating equation directly in the regression

equation). We present regression estimates in two variants: (1) without

regard to the distributions of the variables and (2) based on a subsample

restricted to the region of common support (as defined by the propensity

score estimated from the covariates used for the respective scenario).

Finally, we provide five examples of matching combined with regres-

sion adjustment. Interval matching with regression adjustment calculates
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the treatment effect within blocks after adjusting for the same covariates

included in the propensity score estimating equation for the particular

scenario, averaging over blocks to produce an overall treatment effect esti-

mate. With nearest neighbor matching, regression adjustment is accom-

plished by regressing the outcome on the treatment and covariates using

the matched sample, with appropriate weights for duplicated observations

in the matched control group and for multiple neighbor matching.

Results. We estimated treatment effects under the assumption that self-

selection on the individual Catholic school effect is present and yet cannot

be adjusted for using a statistical model without a measure of individuals’

expectations. Thus, we operate under the assumption that only the treat-

ment effect for the treated has any chance of being estimated consistently,

as in the study by Morgan (2001) on which this example is based. We

therefore compare all estimates to the true simulated treatment effect for

the treated, identified earlier as 6:96.

Estimates using the poorly estimated propensity scores are reported in

the first column of Table 6, along with the implied bias as an estimate of

the treatment effect for the treated in the second column (i.e., the matching

estimate minus 6:96). As expected, all estimates have a substantial posi-

tive bias. Most of the positive bias results from the mistaken exclusion of

the cognitive skill variable from the propensity score estimating equation.

Matching estimates using the well-estimated propensity scores are

reported in the third column of Table 6, along with the expected bias in

the fourth column. On the whole, these estimates are considerably better.

Having the correct specification reduces the bias in those estimates with

the largest bias from column 3, and on average, all estimates oscillate

around the true treatment effect for the treated of 6:96.30

For comparison, we then provide analogous regression estimates in

the second panel of the table. In some cases, these estimates outperform

some of the matching estimates. In fairness to the matching estimates,

however, it should be pointed out that the data analyzed for this example

are well suited to regression because the assumed functional form of

each potential outcome variable is linear and hence relatively simple.

Although we believe that this is reasonable for the simulated application,

there are surely scenarios in which matching can be shown to clearly

outperform regression because of nonlinearities.

The final panel of the table presents estimates from matching combined

with regression adjustment. In several cases, regression adjustment provides
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a slight improvement over the analogous matching estimator implemented

without regression adjustment. But this is not true in all cases.

We have demonstrated three basic points with this example. First, look-

ing across the rows of Table 6, it is clear that matching estimators and dif-

ferent software routines yield different treatment effect estimates (even

ones that are thought to be mathematically equivalent). Thus, at least for

the near future, it will be crucial for researchers to examine multiple esti-

mates of the same treatment effect across estimators and software

packages. We found the lack of consistency across seemingly equivalent

estimators from alternative software routines to be somewhat troubling,

but we assume that this unexpected variation will dissipate with improve-

ments in the software.

Second, matching estimators cannot compensate for an unobserved cov-

ariate in S, which leads to comparisons of treatment and control cases that

are not identical in all relevant aspects other than treatment status. The

absence of the cognitive skill variable for the poorly estimated propensity

scores invalidates both Assumptions 1-S and 2-S. The matching routines

still balance the variables included in the propensity score estimating equa-

tion, but the resulting matching estimates remain biased and inconsistent.

Third, the sort of self-selection dynamic built into this example—where

individuals choose Catholic schooling as a function of their expected gains

from Catholic schooling—makes estimation of both the average treatment

effect among the untreated and the average treatment effect impossible.

Even if all variables in S are observed (i.e., including cognitive skill in this

example), only the average treatment effect among the treated can be esti-

mated consistently because Assumption 1-S cannot be maintained.31

Unfortunately, violation of the assumption of ignorable treatment

assignment (and of both Assumptions 1-S and 2-S) is the scenario in

which most analysts will find themselves, and this is the scenario to which

we turn in the next section. Before discussing what can be done when

ignorability of any form cannot be assumed, we first close the discussion

on which types of matching may work best.

Matching Algorithms That Seek Optimal Balance

For Example 4, we judged the quality of matching algorithms by exam-

ining the distance between the treatment effect estimates that we obtained

and the true treatment effects that we stipulated in constructing our

hypothetical data. Because we only generated one sample, these differ-

ences are not necessarily a very good guide to practice, even though our
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main goal of the example was to show that alternative matching estimators

generally yield different results, and in the absence of ignorability, none

of these may be correct. That example aside, it is generally recognized that

the best matching algorithms are those that optimize balance in the data

being analyzed. Building on this consensus, a broader set of matching

algorithms is currently in development, which grows out of the optimal

matching proposals attributed to Rosenbaum (1989).

Matching is generally judged to be successful if, for both the treatment

and matched control groups, the distribution of the matching variables is

the same. When this result is achieved, the data are said to be balanced, as

noted earlier. As shown by Rosenbaum and Rubin (1984), balance can be

assessed quickly using paired t tests for differences in the means of the

matching variables across matched treatment and control cases. But, to

achieve full balance, the entire joint distribution of the matching variables

must be the same, with all observed differences small enough to be attri-

butable to random variation. To meet this standard, one must evaluate the

equivalence of full joint distributions, and more complicated tests are

required (such as nonparametric Kolmogorov-Smirnov tests; see Abadie

2002 and Diamond and Sekhon 2005).

If the covariates are not balanced, one can change the estimation model

for the propensity score, for example, by adding interaction terms, quadra-

tic terms, or other higher order terms. Or, one can match on the Mahalano-

bis metric in addition to the propensity score, perhaps nesting one set of

matching strategies within another. This respecification is not considered

data mining because it does not involve examining the effect estimate.

But it can be labor intensive, and there is no guarantee that one will find

the best possible balance by simply reestimating the sorts of matching

algorithms introduced earlier or combining them in novel ways.

For this reason, two more general forms of matching have been pro-

posed, each of which is now fairly well developed (but not easy to imple-

ment in standard data analysis packages commonly used in sociology).

Rosenbaum (2002, chap. 10) reports on recent results for full optimal

matching algorithms that he has achieved with colleagues since Rosen-

baum (1989). His algorithms seek to optimize balance and efficiency of

estimation by searching through all possible matches that could be made,

after stipulating the minimum and maximum number of matches for

matched sets of treatment and control cases. Although full optimal match-

ing algorithms vary (see also Hansen 2004a), they are based on the idea of

minimizing the average distance between the estimated propensity scores
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among matched cases. If the estimated propensity scores are correct, then

this minimization problem should balance S.

Diamond and Sekhon (2005) propose a general multivariate matching

method that uses a genetic algorithm to search for the match that achieves

the best possible balance. The quality of balance is specified as a standard

set of t tests of differences of means but also bootstrapped Kolmogorov-

Smirnov tests for the full distributions of the matching variables. Although

their algorithm can be used to carry out matching after the estimation of a

propensity score, their technique is more general and can almost entirely

remove the analyst from having to make any specification choices other

than designating the matching variables that one wishes to balance. Dia-

mond and Sekhon show that their matching algorithms provide superior

balance in both Monte Carlo simulations and a test with genuine data.

Although there is good reason to expect that these types of matching

algorithms can outperform the nearest neighbor, interval, and kernel-

matching algorithms by the criteria of balance, they are considerably more

difficult to implement in practice. With software developments under

way, these disadvantages will be eliminated.

Matching When Treatment Assignment Is Nonignorable

What if neither Assumption 1-S nor Assumption 2-S is viable because one

only observes a subset of the variables in S, which we will now denote by

X? One can still match on X using the techniques just summarized, as we

did for the first column of Table 6 in hypothetical Example 4.

When in this position, one should concentrate on estimating only one

type of treatment effect (usually the treatment effect for the treated,

although perhaps the unconditional average treatment effect). Because a

crucial step must be added to the project—assessing the level of bias that

may arise from possible nonignorability of treatment—focusing on a very

specific treatment effect of primary interest helps to ground a discussion

of an estimate’s limitations. Then, after using one of the matching estima-

tors of the last section, one should use the data to minimize bias in the esti-

mates and, if possible, proceed thereafter to a sensitivity analysis. We

discuss the possibilities for these steps in the order that analysts usually

carry them out.

Covariance adjustment can be incorporated easily into matching esti-

mators. Two alternative but similar methods exist. Rubin and Thomas

(2000; see also 1996) propose a method that can be used in conjunction
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with nearest neighbor and interval matching. One simply estimates a

regression model on the data set created by the matching procedure, per-

haps reusing some or all of the variables in X, in hopes of relieving

unknown consequences of any slight misspecification of the propensity

score estimating equation. The covariates are simply included in the

regression model alongside D, possibly with fixed effects for alternative

strata if multiple cases have been matched to each target case. These

methods are implemented in hypothetical Example 4 and need not be used

only in cases where only a subset of S is observed. In fact, Robins and his

colleagues (see van der Laan and Robins 2003 for citations) have argued

in a series of papers that, in general, one should always offer such ‘‘doubly

robust’’ estimates of causal effects, in hopes that misspecifications of the

propensity score estimating equation and the final regression equation will

neutralize each other.

Heckman et al. (Heckman, Ichimura, and Todd 1997, 1998; Heckman,

Ichimura, Smith, and Todd 1998) propose a slightly different procedure.

First, one regresses Y on covariates for those in the control group, saving

the regression estimates in a vector βc. Then, one creates predicted values

for all individuals using the variables of particular interest by applying the

estimated regression parameters to both the treatment and control cases.

Finally, if estimating the treatment effect for the treated, one then offers

matching estimates based on equation (23) using the residuals in place of

the outcomes.

Abadie and Imbens (2004) show that failure to use a regression adjust-

ment procedure in tandem with a matching algorithm can lead to bias in

finite samples in analyses in which S contains more than one continuous

variable. The amount of potential bias increases with the number of vari-

ables in the assignment equation. They recommend a simple linear regres-

sion adjustment, offering STATA and MATLAB programs that implement

nearest neighbor matching along with the bias correction (see Abadie et al.

2001). We implemented these estimates for the last panel of Table 6, and

in one of the two instances, the regression adjustments reduced the bias of

the estimate.

Although these adjustment procedures may help to refine the balance

of X across treatment and control cases, they do not help to address the

problem of unobservable variables in S. These problems can be quite ser-

ious if the unobserved variables are fairly subtle, such as a differential

latent growth rate for the outcome that is correlated with treatment assign-

ment/selection. In such cases, the options are quite limited for using the

data to diagnose and then correct bias in one’s estimates.
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If longitudinal data are available, one can incorporate a difference-in-

difference adjustment into any of the matching estimators discussed ear-

lier (see Smith and Todd 2005). For example, when data on the outcome

prior to the treatment are available for both the treatment and control

cases, one can substitute into equation (23) the difference between the

posttreatment outcome and the pretreatment outcome for the posttreatment

outcome. The difference-in-difference matching estimator attempts to

account for all time-constant covariates and is analogous to adding indivi-

dual fixed effects to a regression model. An alternative, as in Dehejia and

Wahba (1999), is to include the pretreatment outcome in the regression

equations estimated with the data set constructed by the matching proce-

dure. In evaluations of matching estimates of the treatment effect of train-

ing programs, Heckman et al. (1997) and Smith and Todd (2005) find that

a difference-in-difference local linear matching estimator performed well,

coming closest to replicating the experimental estimates of the effect of

the Job Training Partnership Act (JTPA) and National Supported Work

(NSW) programs. Whether this optimal performance is a reasonable guide

for other applications remains to be determined.

Finally, one can perform a sensitivity analysis and/or use the extant lit-

erature to discuss the heterogeneity that may lurk beneath the matching

estimate. Harding (2003) and DiPrete and Gangl (2004), for example,

draw on the tradition of Rosenbaum (1991, 1992; see also Rosenbaum and

Rubin 1983b) to assess the strength of the relationship that an unobserved

variable would have to have with a treatment and an outcome variable to

challenge a causal inference. Morgan (2001) analyzes variation in the

treatment effect estimate across quintiles of the estimated propensity

score, offering alternative interpretations of variation in treatment effect

estimates based on competing positions in the relevant applied literature

about the nature of some crucial unobserved variables. Rosenbaum (2002)

devotes a large portion of his excellent book on observational data analy-

sis to strategies for performing sensitivity analysis to determine the poten-

tial impact of hidden bias on one’s conclusions.

Remaining Practical Issues in Matching Analysis

In this section, we discuss the remaining practical issues that analysts who

consider using matching estimators must confront. First, we discuss the

relationship between matching estimators and more standard regression

approaches that dominate empirical research in sociology. We show how

44 Sociological Methods & Research



some matching estimators can be written (and hence understood) as well-

specified regression models. Following directly on this discussion—which

also shows how regression, nonetheless, can make it all too easy to com-

pare incomparable individuals—we then discuss the practical issue of how

to empirically identify the common support of the matching variables.

Finally, we discuss what is known about the sampling variance of alterna-

tive matching estimators, and we give a guide to usage of the standard

errors provided by existing software.

Matching and Regression

Our presentation aside, we must note that matching and regression are

closely related methods, and each can be seen as a variant of the other.

Consider how the matching estimates in our hypothetical Examples 1 and

3 could have been generated via standard regression routines.

For hypothetical Example 1, presented in Tables 1 and 2, an analyst

could specify S as two dummy variables and D as one dummy variable. If

all two-way interactions between S and D are then included in a regres-

sion model predicting the outcome, then one has enacted the same perfect

stratification of the data by fitting a saturated model to the cells of the first

panel of Table 2. Accordingly, if one obtains the marginal distribution of

S and the joint distribution of S given D, then one can properly average

the coefficient contrasts across the relevant distributions of S to obtain

consistent estimates of the average treatment effect, the treatment effect

among the treated, and the treatment effect among the untreated.

For hypothetical Example 3, presented in Table 5, the three propensity

score weighting estimates in equations (20) through (22) could be speci-

fied as three weighted ordinary least squares regression models. In fact, if

one defines a weighting variable appropriately, then any standard software

package that estimates weighted regression can be used.

To see how to do this, note first that the naive estimator in equation (6)

can be written as an OLS estimator, ðX0XÞ−1X0y, where (1) X is an n-by-2

matrix that contains a vector of 1s in its first column and a vector of the

values of D for each individual in its second column, and (2) y is an

n-by-1-column vector containing values of Y for each individual. To esti-

mate each of the propensity score weighting estimators in equations (20)

through (22), one simply estimates a weighted ordinary least squares esti-

mator, ðX0WXÞ−1X0Wy, with an appropriately chosen weight matrix W.

For δ̂TT ;weight in equation (20), one specifies W as an n-by-n diagonal

matrix with 1 in the i-by-ith place for members of the treatment group and
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p̂i=ð1− p̂iÞ in the i-by-ith place for members of the control group (where,

as defined earlier for hypothetical Example 3, p̂i is the estimated propen-

sity score). For δ̂TUT ;weight in equation (21), one specifies W as an n-by-n

diagonal matrix with ð1− p̂iÞ=p̂i in the i-by-ith place for members of the

treatment group and 1s in the i-by-ith place for members of the control

group. Finally, for δ̂ATE;weight in equation (22), one specifies W as an n-

by-n diagonal matrix with 1=p̂i in the i-by-ith place for members of the

treatment group and 1=ð1− p̂iÞ in the i-by-ith place for members of the

control group.32

More generally, the relationship between matching and regression has

been established in the recent literature. Most matching estimators can be

rewritten as forms of nonparametric regression (see Hahn 1998; Heckman,

Ichimura, and Todd 1998; Hirano et al. 2003; Imbens 2004), and ordinary

least squares regression can be seen as a variance-weighted form of inter-

val matching (see Angrist and Krueger 1999). Moreover, all average cau-

sal effect estimators can be interpreted as weighted averages of marginal

treatment effects (see Heckman and Vytlacil 2004), whether generated by

matching, regression, or local instrumental variable estimators.

Nevertheless, even though regression can be used as a technique to exe-

cute a stratification of the data, and weighted regression can be used to

estimate propensity score weighting estimators, regression can also yield

misleading results. If, for hypothetical Example 1, S were entered as a

simple linear term interacted with D (or, instead, if S were entered as two

dummy variables but not interacted with D), regression would yield coef-

ficient contrasts that mask the underlying treatment effects.33 In a sense,

this problem is simply a matter of model misspecification. But, at a deeper

level, it may be that regression as a method tends to encourage the analyst

to oversimplify these important model specification issues. Consider

hypothetical Example 2, depicted in Tables 3 and 4. If a saturated regres-

sion model is fit to the data, the lack of overlap in the distribution of S will

be revealed to the analyst when the regression routine drops the coefficient

for the zero cell. However, if a constrained version of the model were fit,

such as if S were entered as a simple linear term interacted with D, the

regression would yield seemingly reasonable coefficients.

All too often, regression modeling, at least as practiced in sociology,

makes it too easy for an analyst to overlook fundamental mismatches

between treatment and control cases. And, thus, one can obtain average

treatment effect estimates with regression techniques even when no mean-

ingful average treatment effect exists. Sensitivity to these possibilities has
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led to a specialized set of techniques to focus the attention of the analyst

on the importance of these concerns.

Assessing the Region of Common Support

In practice, there is often good reason to believe that some of the lack

of observed overlap of S for the treatment and control cases may have

emerged from systematic sources, often related to the choice behavior of

individuals (see Heckman, Ichimura, Smith, and Todd 1998). In these

situations, it is not a sparseness problem that must be corrected. Instead, a

more fundamental mismatch between the observed treatment and control

cases must be addressed, as in our earlier hypothetical Example 2. Treat-

ment cases that have no possible counterpart among the controls are said

to be ‘‘off the support’’ of S for the control cases and likewise for control

cases that have no possible counterparts among the treatment cases.34

When in this situation, applied researchers who use matching techn-

iques to estimate the treatment effect for the treated often estimate a

narrower treatment effect. Using one of the variants of the matching esti-

mators outlined earlier, analysis is confined only to treatment cases whose

propensity scores fall between the minimum and maximum propensity

scores in the control group. Resulting estimates are then interpreted as

estimates of a narrower treatment effect: the common-support treatment

effect for the treated (see Heckman, Ichimura, and Todd 1997, 1998).

The goal of these sorts of techniques is to exclude at the outset those

treatment cases that are beyond the observed minima and maxima of the

probability distributions of the variables in S among the control cases (and

vice versa). Although using the propensity score to find the region of over-

lap may not capture all dimensions of the common support (as there may

be interior spaces in the joint distribution defined by the variables in S),

subsequent matching is then expected to finish the job.

Sometimes, matching on the region of common support helps to clarify

and sharpen the contribution of a study. When estimating the average

treatment effect for the treated, there may be little harm in throwing away

control cases outside the region of common support if all treatment cases

fall within the support of the control cases. And even if imposing the com-

mon support condition results in throwing away some of the treatment

cases, this can be considered an important substantive finding, especially

for interpreting the treatment effect estimate. In this case, the resulting

estimate is the treatment effect for a subset of the treated only and, in par-

ticular, a treatment effect estimate that is informative only about those in
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the treatment and control groups who are equivalent with respect to

observed treatment selection variables. In some applications, this is pre-

cisely the estimate needed (e.g., when evaluating whether a program

should be expanded in size to accommodate more treatment cases but

without changing eligibility criteria).35

Coming to terms with these common support issues has become some-

what of a specialized art form within the empirical matching literature,

and some guidance is available. Heckman, Ichimura, and Todd (1998; see

also Smith and Todd 2005) recommend trimming the region of common

support to eliminate cases in regions of the common support with extre-

mely low density (and not just with respect to the propensity score but for

the full distribution of S). This involves selecting a minimum density

(labeled the ‘‘trimming level’’ ) that is greater than zero. Heckman and his

colleagues have found that estimates are rather sensitive to the level of

trimming in small samples, with greater bias when the trimming level is

lower. However, increasing the trimming level excludes more treatment

cases and results in higher variance. Such concerns with the consequences

for the variance of estimates are hard to judge, for as we discuss next,

much remains to be learned about the statistical properties of matching

estimators.

The Expected Variance of Matching Estimates

After computing a matching estimate of some form, most researchers

naturally desire a measure of its expected variability across samples of

the same size from the same population, either to conduct hypothesis

tests or to offer an informed posterior distribution for the causal effect

that can guide subsequent research. We did not, however, report standard

errors for the treatment effect estimates reported in Table 6 for hypothe-

tical Example 4. Most of the available software routines provide such

estimates.

For example, for the software of Abadie and his colleagues, the one

and five nearest neighbor matching estimates of 7.90 and 7.85 in the first

column of Table 6 have estimated standard errors of .671 and .527,

respectively. These values can be directly compared to two other sets of

estimates. For the OLS estimates of 7.79 and 7.88, which differ depending

on whether the sample is restricted to the region of common support as

measured by the distribution of the estimated propensity score, the esti-

mated standard errors are .451 and .452, respectively. And for the com-

parable one and five nearest neighbor matching estimates with regression
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adjustment of 7.78 and 7.82, the estimated standard errors are .642 and

.509, respectively. The relative sizes of these standard error estimates

across methods are broadly consistent with what one finds in the applied

matching literature: Regression yields the smallest estimated standard

errors, and regression adjustments to matching estimators reduce the stan-

dard errors of matching estimates alone.

Nonetheless, each of the software routines we used relies on a different

methodology for calculating such estimates, and given their mismatch, we

caution against too strong of a reliance on the standard error estimates pro-

duced by any one software routine at present. Much remains to worked

out before commonly accepted standards for calculating standard errors

are available. For now, our advice is to report standard errors for regres-

sion estimates and then to give a sense of the range of standard errors pro-

duced by alternative software for corresponding matching estimates.36

We recommend caution for the following reasons. In some simple

cases, there is widespread agreement on how to properly estimate standard

errors for matching estimators. For example, if a perfect stratification of

the data can be found, the data can be analyzed as if they are a stratified

random sample, with the treatment randomly assigned within each stra-

tum. In this case, the variance estimates from stratified sampling carry

over. But rarely is a perfect stratification available in practice without sub-

stantial sparseness in the data at hand. Once stratification is performed

with reference to an estimated propensity score, the independence that is

assumed within strata for standard error estimates from stratified sampling

methodology is no longer present. And if one adopts a Bayesian perspec-

tive, the model uncertainty of the propensity score estimating equation

must be represented in the posterior.37

Even so, there is now also widespread agreement that convergence

results from nonparametric statistics can be used to justify standard error

estimates for large samples. A variety of scholars have begun to work out

alternative methods for calculating such asymptotic standard errors for

matching estimators, after first rewriting matching estimators as forms of

nonparametric regression (see Abadie and Imbens 2006; Heckman, Ichi-

mura, and Todd 1998; Hahn 1998; Hirano et al. 2003; Imbens 2004). For

these large-sample approaches, however, it is generally assumed that

matching is performed directly with regard to the variables in S, and the

standard errors are appropriate only for large samples in which sparseness

is vanishing. Accordingly, the whole idea of using propensity scores to

solve rampant sparseness problems is almost entirely dispensed with, and

estimated propensity scores then serve merely to clean up whatever chance
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variability in the distribution of S across treatment and control cases

remains in a finite sample.

How frequently will either of these ways of computing standards errors

fit the situations in which applied sociologists will find themselves? In

general, the samples with which sociologists work are of moderate size.

Moreover, sparseness is widespread, and propensity scores (or some other

lower dimensional function in S) must be used to formulate matches. Aba-

die and Imbens (2006) show that one can use brute-force computational

methods to estimate sample variances at points of the joint distribution of

S. When combined with nonparametric estimates of propensity scores,

one can obtain consistent estimates of all pieces of their proposed formu-

las for asymptotic standard errors. And yet, none of this work shows that

the variance estimators that have been proposed remain good guides for

the expected sampling variance of matching estimators under different

amounts of misspecification of the propensity score estimating equation or

when matching is attempted only with regard to the estimated propensity

score rather than completely on the variables in S. Given that this litera-

ture is still developing, it seems prudent to report alternative standard

errors from alternative software routines and to avoid drawing conclusions

that depend on accepting any one particular method for calculating stan-

dard errors.

Conclusions: Strengths and Weaknesses
of Matching Estimators

We conclude by discussing the strengths and weaknesses of matching as a

method for causal inference from observational data. Some of the advan-

tages of matching methods are not inherent or unique to matching itself but

rather are the result of the analytical framework in which most matching

analyses are conducted. Matching focuses attention on the heterogeneity of

the causal effect. It forces the analyst to examine the alternative distribu-

tions of covariates across those exposed to different levels of the causal

variable. The process of examining the region of common support helps the

analyst to recognize which cases in the study are incomparable, such as

which control cases should be ignored when estimating the treatment effect

for the treated and which treatment cases may have no meaningful counter-

parts among the controls. Finally, matching helps to motivate more sophisti-

cated discussions of the unobservables that may be correlated with the

causal variable, and this is an advance over merely conceding that selection
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bias may be present in some form and speculating on the sign of the bias.

Thus, although matching does not solve all (or even very many) of the pro-

blems that prevent regression models from generating reliable estimates of

causal effects, matching succeeds admirably in laying bare the particular

problems of estimating causal effects and then motivating the future

research that is needed to resolve causal controversies.

There are some specific advantages of matching. When matching is

accompanied by explicit balance testing, it minimizes the need to make

assumptions about functional form. If covariates are balanced after match-

ing, one has not relied on the functional form assumptions of the propen-

sity score model. Thus, matching may significantly outperform regression

when the true functional form of a regression is nonlinear but a simple lin-

ear specification is used. In addition, for nontechnical audiences, matching

is often a more intuitive method for dealing with covariates than regres-

sion adjustment. The idea that treatment and control groups have the same

distributions of observed covariates is often easier to explain than how

one ostensibly ‘‘controls for’’ covariates using regression.

Although these are the advantages of matching, it is important that we

not oversell the potential power of the techniques. First, even though the

extension of matching techniques to multivalued treatments has begun,

readily available matching estimators can only be applied to treatments or

causal exposures that are binary. Second, as we just discussed, our inabil-

ity to estimate the variance of most matching estimators with commonly

accepted methods is a genuine weakness (although it is reasonable to

expect that this weakness can be overcome in the near future). Third, as

hypothetical Example 4 showed, different matching estimators can lead to

somewhat different estimates of causal effects, and as yet, there is little

guidance as to which types of matching estimators work best for different

types of applications.

Finally, we close by drawing attention to a common misunderstanding

about matching estimators. In much of the applied literature on matching,

the propensity score is presented as a single predictive dimension that can be

used to balance the distribution of important covariates across treatment and

control cases, thereby warranting causal inference. As we showed in

hypothetical Example 4, perfect balance on important covariates does not

necessarily warrant causal claims. If one does not know of variables that, in

an infinite sample, would yield a perfect stratification, then simply predicting

treatment status from the observed variables using a logit model and then

matching on the estimated propensity score does not solve the causal infer-

ence problem. The estimated propensity scores will balance those variables
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across the treatment and control cases. But the study will remain open to the

sort of ‘‘hidden bias’’ explored by Rosenbaum (2002) but that is often

labeled selection on the unobservables in the social sciences. Matching, like

regression, is thus a statistical method for analyzing available data, which

may have some advantages in some situations. But, in the end, matching

cannot compensate for data insufficiency. Causal controversies are best

resolved by collecting new and better data.

Notes

1. A virtue of matching, as developed in this tradition, is cost-effectiveness for prospec-

tive studies. If the goal of a study is to measure the evolution of a causal effect over time by

measuring symptoms at several points in the future, then discarding nontreated cases unlike

any treated cases can cut expenses without substantially affecting the quality of causal infer-

ences that a study can yield.

2. We adopt this general setup for expository reasons, even though it does have limita-

tions. The perfect measurement assumption, for example, is entirely unreasonable even

though it is commonly invoked in discussions of matching (and many, if not most, other

methodological pieces). We rely on the random-sample perspective because we feel it is the

most natural framing of these methods for the typical sociologist, even though many of the

classic applications and early methodological pieces on matching do not reference random-

sample surveys (instead relying on convenience and choice-based sampling). Pinning down

the exact consequences of the assumed sampling scheme is important, as shown in Imbens

(2004), for developing estimates of the expected variability of matching estimates. We dis-

cuss these issues in more detail in the penultimate section of this article.

3. See Winship and Morgan (1999) and Sobel (1995) for presentations of the counterfac-

tual model in sociology. In this article, we adopt the foundational assumptions of the litera-

ture on counterfactual causality, such as the stable unit treatment value assumption, which

stipulates that the causal effect for each individual does not depend on the treatment status of

any other individual in the population. When this nonindependence assumption is violated,

complications beyond the scope of this article arise.

4. For extensions of matching to multivalued causal/treatment variables, see Angrist and

Krueger (1999), Hirano and Imbens (2004), Imbens (2000), Lechner (2002a, 2002b), Lu

et al. (2001), Rosenbaum (2002), and Imai and van Dyk (2004). As one will see from reading

this literature, the added complexity presented by multivalued and continuous treatments can

be considerable, to the extent that matching loses much of its transparency and is then no

more intuitive than regression (and, because of its unfamiliarity, then appears vastly more

complex than regression). For these reasons, for the foreseeable future, we expect that most

applied researchers will use matching only for the estimation of binary causal effects. Since

such effects are usually the primitives of all more encompassing multivalued treatment

effects, this may not be as severe of a limitation as one might fear.

5. There is a wide variety of notation in the potential outcome literature, and we have

adopted notation that we feel is the easiest to grasp. Equation (1) is often written as one of

the following alternatives: 	i =Y1i −Y0i, δi =Yt
i −Yc

i ; δi =Yti −Yci; τi =Yið1Þ−Yið0Þ, or
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variants thereof. We therefore use the right superscript to denote the potential treatment state

of the corresponding potential outcome variable.

6. In other words, the subscript N serves the same basic notational function as an over-

bar on Yi, as in �Yi: We use this sub-N notation, as it allows for greater clarity in aligning sam-

ple and population-level conditional expectations for subsequent expressions.

7. Although this convergence notation may well be superfluous, we err on the side of

precision of notation at this point because, as we show later, much of the confusion over the

power of matching arises from a lack of appreciation for the different problems created by

sparseness of data and sampling error relative to more serious forms of incomparability of

treatment and control cases.

8. Although an ignorability assumption is satisfied in this case, it would be satisfied in

weaker scenarios as well. As defined in Rubin (1978), ignorability of treatment assignment

holds even if Y1 and Y0 are not fully independent of D but only independent of D after con-

ditioning on observed variables that determine treatment selection. Rosenbaum and Rubin

(1983a) then define strong ignorability to develop the matching literature. To Rubin’s

ignorability assumption, Rosenbaum and Rubin (1983a) required for strong ignorability

that each subject have a nonzero probability of being assigned to either the treatment or the

control group. Despite these clear definitions, the term ignorability is often defined in dif-

ferent ways in the literature. We suspect that this varied history of usage explains why

Rosenbaum (2002) rarely uses the term in his monograph on observational data analysis,

even though he is generally credited, along with Rubin, with developing the ignorability

semantics in this literature. And it also explains why much of the most recent econometrics

literature uses the words unconfoundedness and exogeneity for the same set of indepen-

dence and conditional-independence assumptions (see Imbens 2004).

9. In the main text of this article, we generally refer to collections of variables with bold

capital letters, such as S. For brevity, we rarely qualify these expressions as either vectors that

exist for each individual (i.e., as k-by-1-column vectors of values on variables that exist for

each individual) or as matrices that capture all values for all individuals (i.e., as n-by-k

matrices with individuals as rows and variables as columns). Where such distinctions are

important, we are more specific.

10. When in this situation, researchers often argue that the naive estimator is subject to

bias (either generic omitted variable bias or individually generated selection bias). But since

a perfect stratification of the data can be formulated, the study is said to be free of hidden bias

(see Rosenbaum 2002), treatment assignment is ignorable, or treatment selection is on the

observable variables S only (Heckman et al. 1999). Rosenbaum (2002) stresses the utility of

asserting a no-hidden-bias assumption in an observational study but not then succumbing to

overconfidence. The assumption allows one to obtain a causal effect estimate, but the initial

estimate must be interpreted with caution and examined for its sensitivity to reasonable viola-

tions of Assumptions 1-S and 2-S.

11. This section shows one weakness of the random-sample survey setup that we have

chosen as the background sampling framework for exposition. Since we rely on the conver-

gence results stated earlier, it is now somewhat unnatural to just assert that the sample

moments ‘‘equal’’ the population moments because the sample is sufficiently large. For pur-

ists, read equal in this section as equal in the asymptotic sense.

12. Note further that it is telling that we cannot think of a realistic sociological example

that is as simple as this hypothetical example.

Morgan, Harding / Estimators of Causal Effects 53



13. The naive estimator can be calculated for this example, and it would equal 8:05 for a

very large sample because ½8ð:325Þ+ 14ð:675Þ�− ½2ð:667Þ+ 6ð:167Þ+ 10ð:167Þ� is equal to

8:05. See the last row of Table 3 for the population analogs to the two pieces of the naive

estimator.

14. As Rosenbaum (1987) later clarified (see also Rubin and Thomas 1996), the estimated

propensity scores do a better job of balancing the observed variables in S than the true pro-

pensity scores would in any actual application since the estimated propensity scores correct

for the chance imbalances in S that characterize any finite sample. This insight has led to a

growing literature that seeks to balance variables in S by various computationally intensive

but powerful nonparametric techniques. We discuss this literature later, and for now, we pre-

sent only parametric models, as they dominate the foundational literature on matching.

15. The parameterization of Figure 1 is a constrained tensor product spline regression for

the index function of a logit. See Ruppert, Wand, and Carroll (2003) for examples of such

parameterizations. Figure 1 is generated by setting Siφ in equation (17) to − 2+ 3ðAiÞ−
3ðAi − :1Þ + 2ðAi − :3Þ − 2ðAi − :5Þ + 4ðAi − :7Þ − 4ðAi − :9Þ + 1ðBiÞ− 1ðBi − :1Þ+
2ðBi − :7Þ− 2ðBi − :9Þ+ 3ðAi − :5ÞðBi − :5Þ− 3ðAi − :7Þ ðBi − :7Þ.

16. In effect, this setup establishes A and B as two independent multinomial distributions

with equal probability mass for each of their respective 100 values.

17. We should note that one could easily generate an example where matching vastly out-

performs linear regression by allowing Y1
i and Y0

i to be nonlinear in Ai and Bi.

18. All three regression estimators yield estimates that are typically interpreted as esti-

mates of the average treatment effect, and thus we have placed them in the first column of the

table (even though they could be regarded as estimators of other parameters as well). Notice

that, as estimates of the treatment effect for the treated, they are on average too small.

19. The Mahalanobis metric is ðSi −SjÞ0�− 1ðSi −SjÞ, where � is the covariance matrix

of the variables in S (usually calculated for the treatment cases only). There is a long tradition

in this literature of using Mahalanobis matching in combination with propensity score match-

ing. As Diamond and Sekhon (2005) note, propensity score matching balances the expecta-

tions of the variables in S, and thereafter, Mahalanobis matching can be used to further

balance the higher moments of the joint distribution of S. This proposal is similar to what

Rosenbaum (2002) advocates in some situations, and Diamond and Sekhon offer a genetic

algorithm for pursuing this possibility, which we discuss later.

20. To estimate the treatment effect for the treated, the ranges of the variables in S must

be the same for the treatment and control cases. We do not mention this requirement in the

text, as there is a literature (see Heckman, Ichimura, and Todd 1997, 1998), which we discuss

later, that defines the treatment effect for the treated on the common support and argues that

this is often the central goal of analysis. Thus, even if the support of S is not the same in the

treatment and control groups, an average treatment effect among a subset of the treated can

be estimated.

21. There is an ignorability variant of this expectation-based assumption: Treatment

assignment is independent of Y0 conditional on S.

22. One weakness of the traditional algorithm when used without replacement is that the

estimate will vary depending on the initial ordering of the treatment cases. A second weak-

ness is that without replacement, the sum distance for all treatment cases will generally not

be the minimum because control cases that might make better matches to later treatment

cases may be used early in the algorithm. See our discussion of optimal matching later.
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23. A related form of matching, known as radius matching (see Dehejia and Wahba

2002), matches all control cases within a particular distance—the ‘‘radius’’—from the treat-

ment case and gives the selected control cases equal weight. If there are no control cases

within the radius of a particular treatment case, then the nearest available control case is used

as the match.

24. Increasing the bandwidth increases bias but lowers variance. Smith and Todd (2005)

find that estimates are fairly insensitive to the size of the bandwidth.

25. Another criterion for choosing among alternative matching estimators is relative

efficiency. Our reading of the literature suggests that little is known about the relative effi-

ciency of these estimators (see especially Abadie and Imbens 2006; Hahn 1998; Imbens

2004), even though there are claims in the literature that kernel-based methods are the most

efficient. The efficiency advantage of kernel-matching methods is only a clear guide to

practice if kernel-based methods are known to be no more biased than alternatives. But the

relative bias of kernel-based methods is application dependent and should interact further

with the bandwidth of the kernel. Thus, it seems that we will only know for sure which esti-

mators are most efficient for which types of applications when statisticians discover how to

calculate the sampling variances of all alternative estimators. Thereafter, it should be possi-

ble to compute mean squared error comparisons across alternative estimators for sets of

typical applications.

26. One method for matching on both the Mahalanobis metric and the propensity score is

to include the propensity score in the Mahalanobis metric. A second is to use interval match-

ing and divide the data into blocks using one metric and then match on the second metric

within blocks.

27. To be precise, we generated a sample using a multinomial distribution from a race-

by-region-by-urbanicity grid from the data in Morgan (2001). We then simulated socioeco-

nomic status as random draws from normal distributions, with means and standard deviations

estimated separately for each of the race-by-region-by-urbanicity cells using the data from

Morgan. Then, we generated all other variables iteratively, building on top of these variables,

using joint distributions (where possible) based on estimates from the National Education

Longitudinal Study (NELS) data. Since we relied on standard parametric distributions, the

data are somewhat more smooth than the original NELS data (which thereby gives an advan-

tage to parametric regression relative to nonparametric matching methods, as we note later).

28. The index of the assumed logit was −4.6 − .69(Asian) + .23(Hispanic) − .76(black) −
.46(Native American) + 2.7(urban) + 1.5(northeast) + 1.3(north central) + .35(south) −
.02(siblings) − .018(bedroom) + .31(two parents) + .39(socioeconomic status) + .33(cognitive

skills) − .032(socioeconomic status squared) − .23(cognitive skills squared) − .084(socioeco-

nomic status)(cognitive skills) − .37(two parents)(black) + 1.6(northeast)(black) − .38(north

central)(black) + .72(south)(black) + .23(two parents)(Hispanic) − .74(northeast)(Hispanic) −
1.3(north central)(Hispanic) − 1.3(south)(Hispanic) + .25(individual treatment effect − average

treatment effect).

29. We do not provide a review of software routines, as such a review would be immedi-

ately out of date upon publication. At present, three additional sets of routines seem to be in

use in the applied literature (see Hansen 2004b; Ho et al. 2004; Sekhon 2005).

30. It is noteworthy that even when we requested equivalent matching estimates from

alternative software routines (even beyond those presented in Table 6), we obtained different
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estimates. We cannot determine the source of these differences from the documentation pro-

vided by the software’s creators.

31. At the same time, this sort of example shows that even our earlier definition of a ‘‘per-

fect stratification’’ is somewhat underspecified. According to the definition stated earlier, if

self-selection on the causal effect occurs, a perfect stratification is available only if variables

that accurately measure anticipation of the causal effect for each individual are also available

and duly included in S. Thus, perhaps it would be preferable to refer to three types of perfect

stratification: one where Assumption 1-S is valid (which enables estimation of the average

treatment effect for the untreated), one where Assumption 2-S is valid (which enables estima-

tion of the average treatment for the treated), and one where both are valid (which enables

estimation of the average treatment effect, as well as the average treatment effects for the

treated and the untreated).

32. One could also estimate these three average treatment effects for hypothetical Exam-

ple 1 in the same way, although it would require specifying S as two dummy variables (rather

than one interval-scaled variable) when estimating the propensity score. Thus, even though

we stressed the weighting of stratified estimates in that example, we could also have showed

how individual-level weighting via estimated propensity scores is also consistent for each of

the three treatment effects.

33. Rubin (1977) provides simple and elegant examples of all such complications, high-

lighting the importance of assumptions about the relationships between covariates and out-

comes (see also Holland and Rubin 1983; Rosenbaum 1984).

34. Support is often given slightly different definitions depending on the context, although

most definitions are consistent with a statement such as the following: the union of all infinite-

simally small intervals of a probability distribution that have true nonzero probability mass.

35. As argued by Heckman and Vytlacil (1999, 2000, 2004), these types of treatment

effect estimates are among the most informative, both for policy guidance and theoretical pre-

diction, as they focus on those at the margin of treatment participation (or causal exposure).

36. Two of the three matching software routines that we used for Example 4 allow one to

calculate bootstrapped standard errors in STATA. This is presumably because these easy-to-

implement methods were once thought to provide a general framework for estimating the

standard errors of alternative matching estimators and hence were a fair way to compare the

relative efficiency of alternative matching estimators (see Tu and Zhou 2002). Unfortunately,

Abadie and Imbens (2004) show that conventional bootstrapping is fragile and will not work

in general for matching estimators. Whether generalized forms of bootstrapping may still be

used effectively remains to be determined.

37. There is also a related set of randomization inference techniques, built up from con-

sideration of all of the possible permutations of treatment assignment patterns that could the-

oretically emerge from alternative enactments of the same treatment assignment routine (see

Rosenbaum 2002). These permutation ideas generate formulas for evaluating specific null

hypotheses, which, from our perspective, are largely uncontroversial. They are especially rea-

sonable when the analyst has deep knowledge of a relatively simple treatment assignment

regime and has reason to believe that treatment effects are constant in the population.

Although Rosenbaum (2002) provides large-sample approximations for these permutation-

based tests, the connections to the recent econometrics literature that draws on nonparametric

convergence results have not yet been established.
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